Description: Subclass law for union of classes. (Contributed by NM, 14-Oct-1999) (Proof shortened by Andrew Salmon, 26-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | unss1 | |- ( A C_ B -> ( A u. C ) C_ ( B u. C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel | |- ( A C_ B -> ( x e. A -> x e. B ) ) |
|
2 | 1 | orim1d | |- ( A C_ B -> ( ( x e. A \/ x e. C ) -> ( x e. B \/ x e. C ) ) ) |
3 | elun | |- ( x e. ( A u. C ) <-> ( x e. A \/ x e. C ) ) |
|
4 | elun | |- ( x e. ( B u. C ) <-> ( x e. B \/ x e. C ) ) |
|
5 | 2 3 4 | 3imtr4g | |- ( A C_ B -> ( x e. ( A u. C ) -> x e. ( B u. C ) ) ) |
6 | 5 | ssrdv | |- ( A C_ B -> ( A u. C ) C_ ( B u. C ) ) |