Description: Subclass law for union of classes. (Contributed by NM, 2-Jun-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unss12 | |- ( ( A C_ B /\ C C_ D ) -> ( A u. C ) C_ ( B u. D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unss1 | |- ( A C_ B -> ( A u. C ) C_ ( B u. C ) ) |
|
| 2 | unss2 | |- ( C C_ D -> ( B u. C ) C_ ( B u. D ) ) |
|
| 3 | 1 2 | sylan9ss | |- ( ( A C_ B /\ C C_ D ) -> ( A u. C ) C_ ( B u. D ) ) |