Description: Subclass law for union of classes. Exercise 7 of TakeutiZaring p. 18. (Contributed by NM, 14-Oct-1999)
Ref | Expression | ||
---|---|---|---|
Assertion | unss2 | |- ( A C_ B -> ( C u. A ) C_ ( C u. B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unss1 | |- ( A C_ B -> ( A u. C ) C_ ( B u. C ) ) |
|
2 | uncom | |- ( C u. A ) = ( A u. C ) |
|
3 | uncom | |- ( C u. B ) = ( B u. C ) |
|
4 | 1 2 3 | 3sstr4g | |- ( A C_ B -> ( C u. A ) C_ ( C u. B ) ) |