Metamath Proof Explorer


Theorem unssad

Description: If ( A u. B ) is contained in C , so is A . One-way deduction form of unss . Partial converse of unssd . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypothesis unssad.1
|- ( ph -> ( A u. B ) C_ C )
Assertion unssad
|- ( ph -> A C_ C )

Proof

Step Hyp Ref Expression
1 unssad.1
 |-  ( ph -> ( A u. B ) C_ C )
2 unss
 |-  ( ( A C_ C /\ B C_ C ) <-> ( A u. B ) C_ C )
3 1 2 sylibr
 |-  ( ph -> ( A C_ C /\ B C_ C ) )
4 3 simpld
 |-  ( ph -> A C_ C )