Description: If ( A u. B ) is contained in C , so is B . One-way deduction form of unss . Partial converse of unssd . (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | unssad.1 | |- ( ph -> ( A u. B ) C_ C ) |
|
| Assertion | unssbd | |- ( ph -> B C_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unssad.1 | |- ( ph -> ( A u. B ) C_ C ) |
|
| 2 | unss | |- ( ( A C_ C /\ B C_ C ) <-> ( A u. B ) C_ C ) |
|
| 3 | 1 2 | sylibr | |- ( ph -> ( A C_ C /\ B C_ C ) ) |
| 4 | 3 | simprd | |- ( ph -> B C_ C ) |