Description: A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unssd.1 | |- ( ph -> A C_ C ) |
|
| unssd.2 | |- ( ph -> B C_ C ) |
||
| Assertion | unssd | |- ( ph -> ( A u. B ) C_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unssd.1 | |- ( ph -> A C_ C ) |
|
| 2 | unssd.2 | |- ( ph -> B C_ C ) |
|
| 3 | unss | |- ( ( A C_ C /\ B C_ C ) <-> ( A u. B ) C_ C ) |
|
| 4 | 3 | biimpi | |- ( ( A C_ C /\ B C_ C ) -> ( A u. B ) C_ C ) |
| 5 | 1 2 4 | syl2anc | |- ( ph -> ( A u. B ) C_ C ) |