Description: An inference showing the union of two subclasses is a subclass. (Contributed by Raph Levien, 10-Dec-2002)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unssi.1 | |- A C_ C |
|
| unssi.2 | |- B C_ C |
||
| Assertion | unssi | |- ( A u. B ) C_ C |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unssi.1 | |- A C_ C |
|
| 2 | unssi.2 | |- B C_ C |
|
| 3 | 1 2 | pm3.2i | |- ( A C_ C /\ B C_ C ) |
| 4 | unss | |- ( ( A C_ C /\ B C_ C ) <-> ( A u. B ) C_ C ) |
|
| 5 | 3 4 | mpbi | |- ( A u. B ) C_ C |