Metamath Proof Explorer


Theorem unssi

Description: An inference showing the union of two subclasses is a subclass. (Contributed by Raph Levien, 10-Dec-2002)

Ref Expression
Hypotheses unssi.1
|- A C_ C
unssi.2
|- B C_ C
Assertion unssi
|- ( A u. B ) C_ C

Proof

Step Hyp Ref Expression
1 unssi.1
 |-  A C_ C
2 unssi.2
 |-  B C_ C
3 1 2 pm3.2i
 |-  ( A C_ C /\ B C_ C )
4 unss
 |-  ( ( A C_ C /\ B C_ C ) <-> ( A u. B ) C_ C )
5 3 4 mpbi
 |-  ( A u. B ) C_ C