Description: An inference showing the union of two subclasses is a subclass. (Contributed by Raph Levien, 10-Dec-2002)
Ref | Expression | ||
---|---|---|---|
Hypotheses | unssi.1 | |- A C_ C |
|
unssi.2 | |- B C_ C |
||
Assertion | unssi | |- ( A u. B ) C_ C |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unssi.1 | |- A C_ C |
|
2 | unssi.2 | |- B C_ C |
|
3 | 1 2 | pm3.2i | |- ( A C_ C /\ B C_ C ) |
4 | unss | |- ( ( A C_ C /\ B C_ C ) <-> ( A u. B ) C_ C ) |
|
5 | 3 4 | mpbi | |- ( A u. B ) C_ C |