Metamath Proof Explorer


Theorem unv

Description: The union of a class with the universal class is the universal class. Exercise 4.10(l) of Mendelson p. 231. (Contributed by NM, 17-May-1998)

Ref Expression
Assertion unv
|- ( A u. _V ) = _V

Proof

Step Hyp Ref Expression
1 ssv
 |-  ( A u. _V ) C_ _V
2 ssun2
 |-  _V C_ ( A u. _V )
3 1 2 eqssi
 |-  ( A u. _V ) = _V