| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							relsdom | 
							 |-  Rel ~<  | 
						
						
							| 2 | 
							
								1
							 | 
							brrelex2i | 
							 |-  ( 1o ~< A -> A e. _V )  | 
						
						
							| 3 | 
							
								1
							 | 
							brrelex2i | 
							 |-  ( 1o ~< B -> B e. _V )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							anim12i | 
							 |-  ( ( 1o ~< A /\ 1o ~< B ) -> ( A e. _V /\ B e. _V ) )  | 
						
						
							| 5 | 
							
								
							 | 
							breq2 | 
							 |-  ( x = A -> ( 1o ~< x <-> 1o ~< A ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							anbi1d | 
							 |-  ( x = A -> ( ( 1o ~< x /\ 1o ~< y ) <-> ( 1o ~< A /\ 1o ~< y ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							uneq1 | 
							 |-  ( x = A -> ( x u. y ) = ( A u. y ) )  | 
						
						
							| 8 | 
							
								
							 | 
							xpeq1 | 
							 |-  ( x = A -> ( x X. y ) = ( A X. y ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							breq12d | 
							 |-  ( x = A -> ( ( x u. y ) ~<_ ( x X. y ) <-> ( A u. y ) ~<_ ( A X. y ) ) )  | 
						
						
							| 10 | 
							
								6 9
							 | 
							imbi12d | 
							 |-  ( x = A -> ( ( ( 1o ~< x /\ 1o ~< y ) -> ( x u. y ) ~<_ ( x X. y ) ) <-> ( ( 1o ~< A /\ 1o ~< y ) -> ( A u. y ) ~<_ ( A X. y ) ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							breq2 | 
							 |-  ( y = B -> ( 1o ~< y <-> 1o ~< B ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							anbi2d | 
							 |-  ( y = B -> ( ( 1o ~< A /\ 1o ~< y ) <-> ( 1o ~< A /\ 1o ~< B ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							uneq2 | 
							 |-  ( y = B -> ( A u. y ) = ( A u. B ) )  | 
						
						
							| 14 | 
							
								
							 | 
							xpeq2 | 
							 |-  ( y = B -> ( A X. y ) = ( A X. B ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							breq12d | 
							 |-  ( y = B -> ( ( A u. y ) ~<_ ( A X. y ) <-> ( A u. B ) ~<_ ( A X. B ) ) )  | 
						
						
							| 16 | 
							
								12 15
							 | 
							imbi12d | 
							 |-  ( y = B -> ( ( ( 1o ~< A /\ 1o ~< y ) -> ( A u. y ) ~<_ ( A X. y ) ) <-> ( ( 1o ~< A /\ 1o ~< B ) -> ( A u. B ) ~<_ ( A X. B ) ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							eqid | 
							 |-  ( z e. ( x u. y ) |-> if ( z e. x , <. z , if ( z = v , w , t ) >. , <. if ( z = w , u , v ) , z >. ) ) = ( z e. ( x u. y ) |-> if ( z e. x , <. z , if ( z = v , w , t ) >. , <. if ( z = w , u , v ) , z >. ) )  | 
						
						
							| 18 | 
							
								
							 | 
							eqid | 
							 |-  if ( z e. x , <. z , if ( z = v , w , t ) >. , <. if ( z = w , u , v ) , z >. ) = if ( z e. x , <. z , if ( z = v , w , t ) >. , <. if ( z = w , u , v ) , z >. )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							unxpdomlem3 | 
							 |-  ( ( 1o ~< x /\ 1o ~< y ) -> ( x u. y ) ~<_ ( x X. y ) )  | 
						
						
							| 20 | 
							
								10 16 19
							 | 
							vtocl2g | 
							 |-  ( ( A e. _V /\ B e. _V ) -> ( ( 1o ~< A /\ 1o ~< B ) -> ( A u. B ) ~<_ ( A X. B ) ) )  | 
						
						
							| 21 | 
							
								4 20
							 | 
							mpcom | 
							 |-  ( ( 1o ~< A /\ 1o ~< B ) -> ( A u. B ) ~<_ ( A X. B ) )  |