Step |
Hyp |
Ref |
Expression |
1 |
|
relsdom |
|- Rel ~< |
2 |
1
|
brrelex2i |
|- ( 1o ~< A -> A e. _V ) |
3 |
1
|
brrelex2i |
|- ( 1o ~< B -> B e. _V ) |
4 |
2 3
|
anim12i |
|- ( ( 1o ~< A /\ 1o ~< B ) -> ( A e. _V /\ B e. _V ) ) |
5 |
|
breq2 |
|- ( x = A -> ( 1o ~< x <-> 1o ~< A ) ) |
6 |
5
|
anbi1d |
|- ( x = A -> ( ( 1o ~< x /\ 1o ~< y ) <-> ( 1o ~< A /\ 1o ~< y ) ) ) |
7 |
|
uneq1 |
|- ( x = A -> ( x u. y ) = ( A u. y ) ) |
8 |
|
xpeq1 |
|- ( x = A -> ( x X. y ) = ( A X. y ) ) |
9 |
7 8
|
breq12d |
|- ( x = A -> ( ( x u. y ) ~<_ ( x X. y ) <-> ( A u. y ) ~<_ ( A X. y ) ) ) |
10 |
6 9
|
imbi12d |
|- ( x = A -> ( ( ( 1o ~< x /\ 1o ~< y ) -> ( x u. y ) ~<_ ( x X. y ) ) <-> ( ( 1o ~< A /\ 1o ~< y ) -> ( A u. y ) ~<_ ( A X. y ) ) ) ) |
11 |
|
breq2 |
|- ( y = B -> ( 1o ~< y <-> 1o ~< B ) ) |
12 |
11
|
anbi2d |
|- ( y = B -> ( ( 1o ~< A /\ 1o ~< y ) <-> ( 1o ~< A /\ 1o ~< B ) ) ) |
13 |
|
uneq2 |
|- ( y = B -> ( A u. y ) = ( A u. B ) ) |
14 |
|
xpeq2 |
|- ( y = B -> ( A X. y ) = ( A X. B ) ) |
15 |
13 14
|
breq12d |
|- ( y = B -> ( ( A u. y ) ~<_ ( A X. y ) <-> ( A u. B ) ~<_ ( A X. B ) ) ) |
16 |
12 15
|
imbi12d |
|- ( y = B -> ( ( ( 1o ~< A /\ 1o ~< y ) -> ( A u. y ) ~<_ ( A X. y ) ) <-> ( ( 1o ~< A /\ 1o ~< B ) -> ( A u. B ) ~<_ ( A X. B ) ) ) ) |
17 |
|
eqid |
|- ( z e. ( x u. y ) |-> if ( z e. x , <. z , if ( z = v , w , t ) >. , <. if ( z = w , u , v ) , z >. ) ) = ( z e. ( x u. y ) |-> if ( z e. x , <. z , if ( z = v , w , t ) >. , <. if ( z = w , u , v ) , z >. ) ) |
18 |
|
eqid |
|- if ( z e. x , <. z , if ( z = v , w , t ) >. , <. if ( z = w , u , v ) , z >. ) = if ( z e. x , <. z , if ( z = v , w , t ) >. , <. if ( z = w , u , v ) , z >. ) |
19 |
17 18
|
unxpdomlem3 |
|- ( ( 1o ~< x /\ 1o ~< y ) -> ( x u. y ) ~<_ ( x X. y ) ) |
20 |
10 16 19
|
vtocl2g |
|- ( ( A e. _V /\ B e. _V ) -> ( ( 1o ~< A /\ 1o ~< B ) -> ( A u. B ) ~<_ ( A X. B ) ) ) |
21 |
4 20
|
mpcom |
|- ( ( 1o ~< A /\ 1o ~< B ) -> ( A u. B ) ~<_ ( A X. B ) ) |