| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relsdom |
|- Rel ~< |
| 2 |
1
|
brrelex2i |
|- ( 1o ~< A -> A e. _V ) |
| 3 |
2
|
adantr |
|- ( ( 1o ~< A /\ B ~<_ A ) -> A e. _V ) |
| 4 |
|
1onn |
|- 1o e. _om |
| 5 |
|
xpsneng |
|- ( ( A e. _V /\ 1o e. _om ) -> ( A X. { 1o } ) ~~ A ) |
| 6 |
3 4 5
|
sylancl |
|- ( ( 1o ~< A /\ B ~<_ A ) -> ( A X. { 1o } ) ~~ A ) |
| 7 |
6
|
ensymd |
|- ( ( 1o ~< A /\ B ~<_ A ) -> A ~~ ( A X. { 1o } ) ) |
| 8 |
|
endom |
|- ( A ~~ ( A X. { 1o } ) -> A ~<_ ( A X. { 1o } ) ) |
| 9 |
7 8
|
syl |
|- ( ( 1o ~< A /\ B ~<_ A ) -> A ~<_ ( A X. { 1o } ) ) |
| 10 |
|
simpr |
|- ( ( 1o ~< A /\ B ~<_ A ) -> B ~<_ A ) |
| 11 |
|
0ex |
|- (/) e. _V |
| 12 |
|
xpsneng |
|- ( ( A e. _V /\ (/) e. _V ) -> ( A X. { (/) } ) ~~ A ) |
| 13 |
3 11 12
|
sylancl |
|- ( ( 1o ~< A /\ B ~<_ A ) -> ( A X. { (/) } ) ~~ A ) |
| 14 |
13
|
ensymd |
|- ( ( 1o ~< A /\ B ~<_ A ) -> A ~~ ( A X. { (/) } ) ) |
| 15 |
|
domentr |
|- ( ( B ~<_ A /\ A ~~ ( A X. { (/) } ) ) -> B ~<_ ( A X. { (/) } ) ) |
| 16 |
10 14 15
|
syl2anc |
|- ( ( 1o ~< A /\ B ~<_ A ) -> B ~<_ ( A X. { (/) } ) ) |
| 17 |
|
1n0 |
|- 1o =/= (/) |
| 18 |
|
xpsndisj |
|- ( 1o =/= (/) -> ( ( A X. { 1o } ) i^i ( A X. { (/) } ) ) = (/) ) |
| 19 |
17 18
|
mp1i |
|- ( ( 1o ~< A /\ B ~<_ A ) -> ( ( A X. { 1o } ) i^i ( A X. { (/) } ) ) = (/) ) |
| 20 |
|
undom |
|- ( ( ( A ~<_ ( A X. { 1o } ) /\ B ~<_ ( A X. { (/) } ) ) /\ ( ( A X. { 1o } ) i^i ( A X. { (/) } ) ) = (/) ) -> ( A u. B ) ~<_ ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ) |
| 21 |
9 16 19 20
|
syl21anc |
|- ( ( 1o ~< A /\ B ~<_ A ) -> ( A u. B ) ~<_ ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ) |
| 22 |
|
sdomentr |
|- ( ( 1o ~< A /\ A ~~ ( A X. { 1o } ) ) -> 1o ~< ( A X. { 1o } ) ) |
| 23 |
7 22
|
syldan |
|- ( ( 1o ~< A /\ B ~<_ A ) -> 1o ~< ( A X. { 1o } ) ) |
| 24 |
|
sdomentr |
|- ( ( 1o ~< A /\ A ~~ ( A X. { (/) } ) ) -> 1o ~< ( A X. { (/) } ) ) |
| 25 |
14 24
|
syldan |
|- ( ( 1o ~< A /\ B ~<_ A ) -> 1o ~< ( A X. { (/) } ) ) |
| 26 |
|
unxpdom |
|- ( ( 1o ~< ( A X. { 1o } ) /\ 1o ~< ( A X. { (/) } ) ) -> ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ~<_ ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ) |
| 27 |
23 25 26
|
syl2anc |
|- ( ( 1o ~< A /\ B ~<_ A ) -> ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ~<_ ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ) |
| 28 |
|
xpen |
|- ( ( ( A X. { 1o } ) ~~ A /\ ( A X. { (/) } ) ~~ A ) -> ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ~~ ( A X. A ) ) |
| 29 |
6 13 28
|
syl2anc |
|- ( ( 1o ~< A /\ B ~<_ A ) -> ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ~~ ( A X. A ) ) |
| 30 |
|
domentr |
|- ( ( ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ~<_ ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) /\ ( ( A X. { 1o } ) X. ( A X. { (/) } ) ) ~~ ( A X. A ) ) -> ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ~<_ ( A X. A ) ) |
| 31 |
27 29 30
|
syl2anc |
|- ( ( 1o ~< A /\ B ~<_ A ) -> ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ~<_ ( A X. A ) ) |
| 32 |
|
domtr |
|- ( ( ( A u. B ) ~<_ ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) /\ ( ( A X. { 1o } ) u. ( A X. { (/) } ) ) ~<_ ( A X. A ) ) -> ( A u. B ) ~<_ ( A X. A ) ) |
| 33 |
21 31 32
|
syl2anc |
|- ( ( 1o ~< A /\ B ~<_ A ) -> ( A u. B ) ~<_ ( A X. A ) ) |