Step |
Hyp |
Ref |
Expression |
1 |
|
unxpdomlem1.1 |
|- F = ( x e. ( a u. b ) |-> G ) |
2 |
|
unxpdomlem1.2 |
|- G = if ( x e. a , <. x , if ( x = m , t , s ) >. , <. if ( x = t , n , m ) , x >. ) |
3 |
|
unxpdomlem2.1 |
|- ( ph -> w e. ( a u. b ) ) |
4 |
|
unxpdomlem2.2 |
|- ( ph -> -. m = n ) |
5 |
|
unxpdomlem2.3 |
|- ( ph -> -. s = t ) |
6 |
5
|
adantr |
|- ( ( ph /\ ( z e. a /\ -. w e. a ) ) -> -. s = t ) |
7 |
|
elun1 |
|- ( z e. a -> z e. ( a u. b ) ) |
8 |
7
|
ad2antrl |
|- ( ( ph /\ ( z e. a /\ -. w e. a ) ) -> z e. ( a u. b ) ) |
9 |
1 2
|
unxpdomlem1 |
|- ( z e. ( a u. b ) -> ( F ` z ) = if ( z e. a , <. z , if ( z = m , t , s ) >. , <. if ( z = t , n , m ) , z >. ) ) |
10 |
8 9
|
syl |
|- ( ( ph /\ ( z e. a /\ -. w e. a ) ) -> ( F ` z ) = if ( z e. a , <. z , if ( z = m , t , s ) >. , <. if ( z = t , n , m ) , z >. ) ) |
11 |
|
iftrue |
|- ( z e. a -> if ( z e. a , <. z , if ( z = m , t , s ) >. , <. if ( z = t , n , m ) , z >. ) = <. z , if ( z = m , t , s ) >. ) |
12 |
11
|
ad2antrl |
|- ( ( ph /\ ( z e. a /\ -. w e. a ) ) -> if ( z e. a , <. z , if ( z = m , t , s ) >. , <. if ( z = t , n , m ) , z >. ) = <. z , if ( z = m , t , s ) >. ) |
13 |
10 12
|
eqtrd |
|- ( ( ph /\ ( z e. a /\ -. w e. a ) ) -> ( F ` z ) = <. z , if ( z = m , t , s ) >. ) |
14 |
3
|
adantr |
|- ( ( ph /\ ( z e. a /\ -. w e. a ) ) -> w e. ( a u. b ) ) |
15 |
1 2
|
unxpdomlem1 |
|- ( w e. ( a u. b ) -> ( F ` w ) = if ( w e. a , <. w , if ( w = m , t , s ) >. , <. if ( w = t , n , m ) , w >. ) ) |
16 |
14 15
|
syl |
|- ( ( ph /\ ( z e. a /\ -. w e. a ) ) -> ( F ` w ) = if ( w e. a , <. w , if ( w = m , t , s ) >. , <. if ( w = t , n , m ) , w >. ) ) |
17 |
|
iffalse |
|- ( -. w e. a -> if ( w e. a , <. w , if ( w = m , t , s ) >. , <. if ( w = t , n , m ) , w >. ) = <. if ( w = t , n , m ) , w >. ) |
18 |
17
|
ad2antll |
|- ( ( ph /\ ( z e. a /\ -. w e. a ) ) -> if ( w e. a , <. w , if ( w = m , t , s ) >. , <. if ( w = t , n , m ) , w >. ) = <. if ( w = t , n , m ) , w >. ) |
19 |
16 18
|
eqtrd |
|- ( ( ph /\ ( z e. a /\ -. w e. a ) ) -> ( F ` w ) = <. if ( w = t , n , m ) , w >. ) |
20 |
13 19
|
eqeq12d |
|- ( ( ph /\ ( z e. a /\ -. w e. a ) ) -> ( ( F ` z ) = ( F ` w ) <-> <. z , if ( z = m , t , s ) >. = <. if ( w = t , n , m ) , w >. ) ) |
21 |
20
|
biimpa |
|- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> <. z , if ( z = m , t , s ) >. = <. if ( w = t , n , m ) , w >. ) |
22 |
|
vex |
|- z e. _V |
23 |
|
vex |
|- t e. _V |
24 |
|
vex |
|- s e. _V |
25 |
23 24
|
ifex |
|- if ( z = m , t , s ) e. _V |
26 |
22 25
|
opth |
|- ( <. z , if ( z = m , t , s ) >. = <. if ( w = t , n , m ) , w >. <-> ( z = if ( w = t , n , m ) /\ if ( z = m , t , s ) = w ) ) |
27 |
21 26
|
sylib |
|- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> ( z = if ( w = t , n , m ) /\ if ( z = m , t , s ) = w ) ) |
28 |
27
|
simprd |
|- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> if ( z = m , t , s ) = w ) |
29 |
|
iftrue |
|- ( z = m -> if ( z = m , t , s ) = t ) |
30 |
28
|
eqeq1d |
|- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> ( if ( z = m , t , s ) = t <-> w = t ) ) |
31 |
29 30
|
syl5ib |
|- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> ( z = m -> w = t ) ) |
32 |
|
iftrue |
|- ( w = t -> if ( w = t , n , m ) = n ) |
33 |
27
|
simpld |
|- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> z = if ( w = t , n , m ) ) |
34 |
33
|
eqeq1d |
|- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> ( z = n <-> if ( w = t , n , m ) = n ) ) |
35 |
32 34
|
syl5ibr |
|- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> ( w = t -> z = n ) ) |
36 |
31 35
|
syld |
|- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> ( z = m -> z = n ) ) |
37 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> -. m = n ) |
38 |
|
equequ1 |
|- ( z = m -> ( z = n <-> m = n ) ) |
39 |
38
|
notbid |
|- ( z = m -> ( -. z = n <-> -. m = n ) ) |
40 |
37 39
|
syl5ibrcom |
|- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> ( z = m -> -. z = n ) ) |
41 |
36 40
|
pm2.65d |
|- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> -. z = m ) |
42 |
41
|
iffalsed |
|- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> if ( z = m , t , s ) = s ) |
43 |
|
iffalse |
|- ( -. w = t -> if ( w = t , n , m ) = m ) |
44 |
33
|
eqeq1d |
|- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> ( z = m <-> if ( w = t , n , m ) = m ) ) |
45 |
43 44
|
syl5ibr |
|- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> ( -. w = t -> z = m ) ) |
46 |
41 45
|
mt3d |
|- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> w = t ) |
47 |
28 42 46
|
3eqtr3d |
|- ( ( ( ph /\ ( z e. a /\ -. w e. a ) ) /\ ( F ` z ) = ( F ` w ) ) -> s = t ) |
48 |
6 47
|
mtand |
|- ( ( ph /\ ( z e. a /\ -. w e. a ) ) -> -. ( F ` z ) = ( F ` w ) ) |