Step |
Hyp |
Ref |
Expression |
1 |
|
reldom |
|- Rel ~<_ |
2 |
1
|
brrelex2i |
|- ( ( A X. A ) ~<_ ( B u. C ) -> ( B u. C ) e. _V ) |
3 |
|
domeng |
|- ( ( B u. C ) e. _V -> ( ( A X. A ) ~<_ ( B u. C ) <-> E. x ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) ) |
4 |
2 3
|
syl |
|- ( ( A X. A ) ~<_ ( B u. C ) -> ( ( A X. A ) ~<_ ( B u. C ) <-> E. x ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) ) |
5 |
4
|
ibi |
|- ( ( A X. A ) ~<_ ( B u. C ) -> E. x ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) |
6 |
|
simprl |
|- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( A X. A ) ~~ x ) |
7 |
|
indi |
|- ( x i^i ( B u. C ) ) = ( ( x i^i B ) u. ( x i^i C ) ) |
8 |
|
simprr |
|- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> x C_ ( B u. C ) ) |
9 |
|
df-ss |
|- ( x C_ ( B u. C ) <-> ( x i^i ( B u. C ) ) = x ) |
10 |
8 9
|
sylib |
|- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( x i^i ( B u. C ) ) = x ) |
11 |
7 10
|
eqtr3id |
|- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( ( x i^i B ) u. ( x i^i C ) ) = x ) |
12 |
6 11
|
breqtrrd |
|- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( A X. A ) ~~ ( ( x i^i B ) u. ( x i^i C ) ) ) |
13 |
|
unxpwdom2 |
|- ( ( A X. A ) ~~ ( ( x i^i B ) u. ( x i^i C ) ) -> ( A ~<_* ( x i^i B ) \/ A ~<_ ( x i^i C ) ) ) |
14 |
12 13
|
syl |
|- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( A ~<_* ( x i^i B ) \/ A ~<_ ( x i^i C ) ) ) |
15 |
|
ssun1 |
|- B C_ ( B u. C ) |
16 |
2
|
adantr |
|- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( B u. C ) e. _V ) |
17 |
|
ssexg |
|- ( ( B C_ ( B u. C ) /\ ( B u. C ) e. _V ) -> B e. _V ) |
18 |
15 16 17
|
sylancr |
|- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> B e. _V ) |
19 |
|
inss2 |
|- ( x i^i B ) C_ B |
20 |
|
ssdomg |
|- ( B e. _V -> ( ( x i^i B ) C_ B -> ( x i^i B ) ~<_ B ) ) |
21 |
18 19 20
|
mpisyl |
|- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( x i^i B ) ~<_ B ) |
22 |
|
domwdom |
|- ( ( x i^i B ) ~<_ B -> ( x i^i B ) ~<_* B ) |
23 |
21 22
|
syl |
|- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( x i^i B ) ~<_* B ) |
24 |
|
wdomtr |
|- ( ( A ~<_* ( x i^i B ) /\ ( x i^i B ) ~<_* B ) -> A ~<_* B ) |
25 |
24
|
expcom |
|- ( ( x i^i B ) ~<_* B -> ( A ~<_* ( x i^i B ) -> A ~<_* B ) ) |
26 |
23 25
|
syl |
|- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( A ~<_* ( x i^i B ) -> A ~<_* B ) ) |
27 |
|
ssun2 |
|- C C_ ( B u. C ) |
28 |
|
ssexg |
|- ( ( C C_ ( B u. C ) /\ ( B u. C ) e. _V ) -> C e. _V ) |
29 |
27 16 28
|
sylancr |
|- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> C e. _V ) |
30 |
|
inss2 |
|- ( x i^i C ) C_ C |
31 |
|
ssdomg |
|- ( C e. _V -> ( ( x i^i C ) C_ C -> ( x i^i C ) ~<_ C ) ) |
32 |
29 30 31
|
mpisyl |
|- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( x i^i C ) ~<_ C ) |
33 |
|
domtr |
|- ( ( A ~<_ ( x i^i C ) /\ ( x i^i C ) ~<_ C ) -> A ~<_ C ) |
34 |
33
|
expcom |
|- ( ( x i^i C ) ~<_ C -> ( A ~<_ ( x i^i C ) -> A ~<_ C ) ) |
35 |
32 34
|
syl |
|- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( A ~<_ ( x i^i C ) -> A ~<_ C ) ) |
36 |
26 35
|
orim12d |
|- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( ( A ~<_* ( x i^i B ) \/ A ~<_ ( x i^i C ) ) -> ( A ~<_* B \/ A ~<_ C ) ) ) |
37 |
14 36
|
mpd |
|- ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( A ~<_* B \/ A ~<_ C ) ) |
38 |
5 37
|
exlimddv |
|- ( ( A X. A ) ~<_ ( B u. C ) -> ( A ~<_* B \/ A ~<_ C ) ) |