| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reldom |  |-  Rel ~<_ | 
						
							| 2 | 1 | brrelex2i |  |-  ( ( A X. A ) ~<_ ( B u. C ) -> ( B u. C ) e. _V ) | 
						
							| 3 |  | domeng |  |-  ( ( B u. C ) e. _V -> ( ( A X. A ) ~<_ ( B u. C ) <-> E. x ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) ) | 
						
							| 4 | 2 3 | syl |  |-  ( ( A X. A ) ~<_ ( B u. C ) -> ( ( A X. A ) ~<_ ( B u. C ) <-> E. x ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) ) | 
						
							| 5 | 4 | ibi |  |-  ( ( A X. A ) ~<_ ( B u. C ) -> E. x ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) | 
						
							| 6 |  | simprl |  |-  ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( A X. A ) ~~ x ) | 
						
							| 7 |  | indi |  |-  ( x i^i ( B u. C ) ) = ( ( x i^i B ) u. ( x i^i C ) ) | 
						
							| 8 |  | simprr |  |-  ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> x C_ ( B u. C ) ) | 
						
							| 9 |  | dfss2 |  |-  ( x C_ ( B u. C ) <-> ( x i^i ( B u. C ) ) = x ) | 
						
							| 10 | 8 9 | sylib |  |-  ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( x i^i ( B u. C ) ) = x ) | 
						
							| 11 | 7 10 | eqtr3id |  |-  ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( ( x i^i B ) u. ( x i^i C ) ) = x ) | 
						
							| 12 | 6 11 | breqtrrd |  |-  ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( A X. A ) ~~ ( ( x i^i B ) u. ( x i^i C ) ) ) | 
						
							| 13 |  | unxpwdom2 |  |-  ( ( A X. A ) ~~ ( ( x i^i B ) u. ( x i^i C ) ) -> ( A ~<_* ( x i^i B ) \/ A ~<_ ( x i^i C ) ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( A ~<_* ( x i^i B ) \/ A ~<_ ( x i^i C ) ) ) | 
						
							| 15 |  | ssun1 |  |-  B C_ ( B u. C ) | 
						
							| 16 | 2 | adantr |  |-  ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( B u. C ) e. _V ) | 
						
							| 17 |  | ssexg |  |-  ( ( B C_ ( B u. C ) /\ ( B u. C ) e. _V ) -> B e. _V ) | 
						
							| 18 | 15 16 17 | sylancr |  |-  ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> B e. _V ) | 
						
							| 19 |  | inss2 |  |-  ( x i^i B ) C_ B | 
						
							| 20 |  | ssdomg |  |-  ( B e. _V -> ( ( x i^i B ) C_ B -> ( x i^i B ) ~<_ B ) ) | 
						
							| 21 | 18 19 20 | mpisyl |  |-  ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( x i^i B ) ~<_ B ) | 
						
							| 22 |  | domwdom |  |-  ( ( x i^i B ) ~<_ B -> ( x i^i B ) ~<_* B ) | 
						
							| 23 | 21 22 | syl |  |-  ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( x i^i B ) ~<_* B ) | 
						
							| 24 |  | wdomtr |  |-  ( ( A ~<_* ( x i^i B ) /\ ( x i^i B ) ~<_* B ) -> A ~<_* B ) | 
						
							| 25 | 24 | expcom |  |-  ( ( x i^i B ) ~<_* B -> ( A ~<_* ( x i^i B ) -> A ~<_* B ) ) | 
						
							| 26 | 23 25 | syl |  |-  ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( A ~<_* ( x i^i B ) -> A ~<_* B ) ) | 
						
							| 27 |  | ssun2 |  |-  C C_ ( B u. C ) | 
						
							| 28 |  | ssexg |  |-  ( ( C C_ ( B u. C ) /\ ( B u. C ) e. _V ) -> C e. _V ) | 
						
							| 29 | 27 16 28 | sylancr |  |-  ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> C e. _V ) | 
						
							| 30 |  | inss2 |  |-  ( x i^i C ) C_ C | 
						
							| 31 |  | ssdomg |  |-  ( C e. _V -> ( ( x i^i C ) C_ C -> ( x i^i C ) ~<_ C ) ) | 
						
							| 32 | 29 30 31 | mpisyl |  |-  ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( x i^i C ) ~<_ C ) | 
						
							| 33 |  | domtr |  |-  ( ( A ~<_ ( x i^i C ) /\ ( x i^i C ) ~<_ C ) -> A ~<_ C ) | 
						
							| 34 | 33 | expcom |  |-  ( ( x i^i C ) ~<_ C -> ( A ~<_ ( x i^i C ) -> A ~<_ C ) ) | 
						
							| 35 | 32 34 | syl |  |-  ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( A ~<_ ( x i^i C ) -> A ~<_ C ) ) | 
						
							| 36 | 26 35 | orim12d |  |-  ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( ( A ~<_* ( x i^i B ) \/ A ~<_ ( x i^i C ) ) -> ( A ~<_* B \/ A ~<_ C ) ) ) | 
						
							| 37 | 14 36 | mpd |  |-  ( ( ( A X. A ) ~<_ ( B u. C ) /\ ( ( A X. A ) ~~ x /\ x C_ ( B u. C ) ) ) -> ( A ~<_* B \/ A ~<_ C ) ) | 
						
							| 38 | 5 37 | exlimddv |  |-  ( ( A X. A ) ~<_ ( B u. C ) -> ( A ~<_* B \/ A ~<_ C ) ) |