Step |
Hyp |
Ref |
Expression |
1 |
|
upbdrech2.b |
|- ( ( ph /\ x e. A ) -> B e. RR ) |
2 |
|
upbdrech2.bd |
|- ( ph -> E. y e. RR A. x e. A B <_ y ) |
3 |
|
upbdrech2.c |
|- C = if ( A = (/) , 0 , sup ( { z | E. x e. A z = B } , RR , < ) ) |
4 |
|
iftrue |
|- ( A = (/) -> if ( A = (/) , 0 , sup ( { z | E. x e. A z = B } , RR , < ) ) = 0 ) |
5 |
|
0red |
|- ( A = (/) -> 0 e. RR ) |
6 |
4 5
|
eqeltrd |
|- ( A = (/) -> if ( A = (/) , 0 , sup ( { z | E. x e. A z = B } , RR , < ) ) e. RR ) |
7 |
6
|
adantl |
|- ( ( ph /\ A = (/) ) -> if ( A = (/) , 0 , sup ( { z | E. x e. A z = B } , RR , < ) ) e. RR ) |
8 |
|
simpr |
|- ( ( ph /\ -. A = (/) ) -> -. A = (/) ) |
9 |
8
|
iffalsed |
|- ( ( ph /\ -. A = (/) ) -> if ( A = (/) , 0 , sup ( { z | E. x e. A z = B } , RR , < ) ) = sup ( { z | E. x e. A z = B } , RR , < ) ) |
10 |
8
|
neqned |
|- ( ( ph /\ -. A = (/) ) -> A =/= (/) ) |
11 |
1
|
adantlr |
|- ( ( ( ph /\ -. A = (/) ) /\ x e. A ) -> B e. RR ) |
12 |
2
|
adantr |
|- ( ( ph /\ -. A = (/) ) -> E. y e. RR A. x e. A B <_ y ) |
13 |
|
eqid |
|- sup ( { z | E. x e. A z = B } , RR , < ) = sup ( { z | E. x e. A z = B } , RR , < ) |
14 |
10 11 12 13
|
upbdrech |
|- ( ( ph /\ -. A = (/) ) -> ( sup ( { z | E. x e. A z = B } , RR , < ) e. RR /\ A. x e. A B <_ sup ( { z | E. x e. A z = B } , RR , < ) ) ) |
15 |
14
|
simpld |
|- ( ( ph /\ -. A = (/) ) -> sup ( { z | E. x e. A z = B } , RR , < ) e. RR ) |
16 |
9 15
|
eqeltrd |
|- ( ( ph /\ -. A = (/) ) -> if ( A = (/) , 0 , sup ( { z | E. x e. A z = B } , RR , < ) ) e. RR ) |
17 |
7 16
|
pm2.61dan |
|- ( ph -> if ( A = (/) , 0 , sup ( { z | E. x e. A z = B } , RR , < ) ) e. RR ) |
18 |
3 17
|
eqeltrid |
|- ( ph -> C e. RR ) |
19 |
|
rzal |
|- ( A = (/) -> A. x e. A B <_ C ) |
20 |
19
|
adantl |
|- ( ( ph /\ A = (/) ) -> A. x e. A B <_ C ) |
21 |
14
|
simprd |
|- ( ( ph /\ -. A = (/) ) -> A. x e. A B <_ sup ( { z | E. x e. A z = B } , RR , < ) ) |
22 |
|
iffalse |
|- ( -. A = (/) -> if ( A = (/) , 0 , sup ( { z | E. x e. A z = B } , RR , < ) ) = sup ( { z | E. x e. A z = B } , RR , < ) ) |
23 |
3 22
|
syl5eq |
|- ( -. A = (/) -> C = sup ( { z | E. x e. A z = B } , RR , < ) ) |
24 |
23
|
breq2d |
|- ( -. A = (/) -> ( B <_ C <-> B <_ sup ( { z | E. x e. A z = B } , RR , < ) ) ) |
25 |
24
|
ralbidv |
|- ( -. A = (/) -> ( A. x e. A B <_ C <-> A. x e. A B <_ sup ( { z | E. x e. A z = B } , RR , < ) ) ) |
26 |
25
|
adantl |
|- ( ( ph /\ -. A = (/) ) -> ( A. x e. A B <_ C <-> A. x e. A B <_ sup ( { z | E. x e. A z = B } , RR , < ) ) ) |
27 |
21 26
|
mpbird |
|- ( ( ph /\ -. A = (/) ) -> A. x e. A B <_ C ) |
28 |
20 27
|
pm2.61dan |
|- ( ph -> A. x e. A B <_ C ) |
29 |
18 28
|
jca |
|- ( ph -> ( C e. RR /\ A. x e. A B <_ C ) ) |