| Step |
Hyp |
Ref |
Expression |
| 1 |
|
updjud.f |
|- ( ph -> F : A --> C ) |
| 2 |
|
updjud.g |
|- ( ph -> G : B --> C ) |
| 3 |
|
updjud.a |
|- ( ph -> A e. V ) |
| 4 |
|
updjud.b |
|- ( ph -> B e. W ) |
| 5 |
3 4
|
jca |
|- ( ph -> ( A e. V /\ B e. W ) ) |
| 6 |
|
djuex |
|- ( ( A e. V /\ B e. W ) -> ( A |_| B ) e. _V ) |
| 7 |
|
mptexg |
|- ( ( A |_| B ) e. _V -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) e. _V ) |
| 8 |
5 6 7
|
3syl |
|- ( ph -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) e. _V ) |
| 9 |
|
feq1 |
|- ( h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) -> ( h : ( A |_| B ) --> C <-> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C ) ) |
| 10 |
|
coeq1 |
|- ( h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) -> ( h o. ( inl |` A ) ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) ) |
| 11 |
10
|
eqeq1d |
|- ( h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) -> ( ( h o. ( inl |` A ) ) = F <-> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F ) ) |
| 12 |
|
coeq1 |
|- ( h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) -> ( h o. ( inr |` B ) ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) ) |
| 13 |
12
|
eqeq1d |
|- ( h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) -> ( ( h o. ( inr |` B ) ) = G <-> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) |
| 14 |
9 11 13
|
3anbi123d |
|- ( h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) -> ( ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) <-> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) ) |
| 15 |
|
eqeq1 |
|- ( h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) -> ( h = k <-> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) ) |
| 16 |
15
|
imbi2d |
|- ( h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) -> ( ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> h = k ) <-> ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) ) ) |
| 17 |
16
|
ralbidv |
|- ( h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) -> ( A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> h = k ) <-> A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) ) ) |
| 18 |
14 17
|
anbi12d |
|- ( h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) -> ( ( ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) /\ A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> h = k ) ) <-> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) /\ A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) ) ) ) |
| 19 |
18
|
adantl |
|- ( ( ph /\ h = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ) -> ( ( ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) /\ A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> h = k ) ) <-> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) /\ A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) ) ) ) |
| 20 |
|
eqid |
|- ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) |
| 21 |
1 2 20
|
updjudhf |
|- ( ph -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C ) |
| 22 |
1 2 20
|
updjudhcoinlf |
|- ( ph -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F ) |
| 23 |
1 2 20
|
updjudhcoinrg |
|- ( ph -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) |
| 24 |
|
simpr |
|- ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) |
| 25 |
|
eqeq2 |
|- ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F -> ( ( k o. ( inl |` A ) ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) <-> ( k o. ( inl |` A ) ) = F ) ) |
| 26 |
|
fvres |
|- ( z e. A -> ( ( inl |` A ) ` z ) = ( inl ` z ) ) |
| 27 |
26
|
eqcomd |
|- ( z e. A -> ( inl ` z ) = ( ( inl |` A ) ` z ) ) |
| 28 |
27
|
eqeq2d |
|- ( z e. A -> ( y = ( inl ` z ) <-> y = ( ( inl |` A ) ` z ) ) ) |
| 29 |
28
|
adantl |
|- ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) /\ ph ) /\ z e. A ) -> ( y = ( inl ` z ) <-> y = ( ( inl |` A ) ` z ) ) ) |
| 30 |
|
fveq1 |
|- ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) ` z ) = ( ( k o. ( inl |` A ) ) ` z ) ) |
| 31 |
30
|
ad2antrr |
|- ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) /\ ph ) /\ z e. A ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) ` z ) = ( ( k o. ( inl |` A ) ) ` z ) ) |
| 32 |
|
inlresf |
|- ( inl |` A ) : A --> ( A |_| B ) |
| 33 |
|
ffn |
|- ( ( inl |` A ) : A --> ( A |_| B ) -> ( inl |` A ) Fn A ) |
| 34 |
32 33
|
mp1i |
|- ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) /\ ph ) -> ( inl |` A ) Fn A ) |
| 35 |
|
fvco2 |
|- ( ( ( inl |` A ) Fn A /\ z e. A ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) ` z ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` ( ( inl |` A ) ` z ) ) ) |
| 36 |
34 35
|
sylan |
|- ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) /\ ph ) /\ z e. A ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) ` z ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` ( ( inl |` A ) ` z ) ) ) |
| 37 |
|
fvco2 |
|- ( ( ( inl |` A ) Fn A /\ z e. A ) -> ( ( k o. ( inl |` A ) ) ` z ) = ( k ` ( ( inl |` A ) ` z ) ) ) |
| 38 |
34 37
|
sylan |
|- ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) /\ ph ) /\ z e. A ) -> ( ( k o. ( inl |` A ) ) ` z ) = ( k ` ( ( inl |` A ) ` z ) ) ) |
| 39 |
31 36 38
|
3eqtr3d |
|- ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) /\ ph ) /\ z e. A ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` ( ( inl |` A ) ` z ) ) = ( k ` ( ( inl |` A ) ` z ) ) ) |
| 40 |
|
fveq2 |
|- ( y = ( ( inl |` A ) ` z ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` ( ( inl |` A ) ` z ) ) ) |
| 41 |
|
fveq2 |
|- ( y = ( ( inl |` A ) ` z ) -> ( k ` y ) = ( k ` ( ( inl |` A ) ` z ) ) ) |
| 42 |
40 41
|
eqeq12d |
|- ( y = ( ( inl |` A ) ` z ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) <-> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` ( ( inl |` A ) ` z ) ) = ( k ` ( ( inl |` A ) ` z ) ) ) ) |
| 43 |
39 42
|
syl5ibrcom |
|- ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) /\ ph ) /\ z e. A ) -> ( y = ( ( inl |` A ) ` z ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 44 |
29 43
|
sylbid |
|- ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) /\ ph ) /\ z e. A ) -> ( y = ( inl ` z ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 45 |
44
|
expimpd |
|- ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) /\ ph ) -> ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 46 |
45
|
ex |
|- ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) -> ( ph -> ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) |
| 47 |
46
|
eqcoms |
|- ( ( k o. ( inl |` A ) ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) -> ( ph -> ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) |
| 48 |
25 47
|
biimtrrdi |
|- ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F -> ( ( k o. ( inl |` A ) ) = F -> ( ph -> ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) ) |
| 49 |
48
|
com23 |
|- ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F -> ( ph -> ( ( k o. ( inl |` A ) ) = F -> ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) ) |
| 50 |
49
|
3ad2ant2 |
|- ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) -> ( ph -> ( ( k o. ( inl |` A ) ) = F -> ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) ) |
| 51 |
50
|
impcom |
|- ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> ( ( k o. ( inl |` A ) ) = F -> ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) |
| 52 |
51
|
com12 |
|- ( ( k o. ( inl |` A ) ) = F -> ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) |
| 53 |
52
|
3ad2ant2 |
|- ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) |
| 54 |
53
|
impcom |
|- ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 55 |
54
|
com12 |
|- ( ( z e. A /\ y = ( inl ` z ) ) -> ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 56 |
55
|
rexlimiva |
|- ( E. z e. A y = ( inl ` z ) -> ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 57 |
|
eqeq2 |
|- ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G -> ( ( k o. ( inr |` B ) ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) <-> ( k o. ( inr |` B ) ) = G ) ) |
| 58 |
|
fvres |
|- ( z e. B -> ( ( inr |` B ) ` z ) = ( inr ` z ) ) |
| 59 |
58
|
eqcomd |
|- ( z e. B -> ( inr ` z ) = ( ( inr |` B ) ` z ) ) |
| 60 |
59
|
eqeq2d |
|- ( z e. B -> ( y = ( inr ` z ) <-> y = ( ( inr |` B ) ` z ) ) ) |
| 61 |
60
|
adantl |
|- ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) /\ ph ) /\ z e. B ) -> ( y = ( inr ` z ) <-> y = ( ( inr |` B ) ` z ) ) ) |
| 62 |
|
fveq1 |
|- ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) ` z ) = ( ( k o. ( inr |` B ) ) ` z ) ) |
| 63 |
62
|
ad2antrr |
|- ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) /\ ph ) /\ z e. B ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) ` z ) = ( ( k o. ( inr |` B ) ) ` z ) ) |
| 64 |
|
inrresf |
|- ( inr |` B ) : B --> ( A |_| B ) |
| 65 |
|
ffn |
|- ( ( inr |` B ) : B --> ( A |_| B ) -> ( inr |` B ) Fn B ) |
| 66 |
64 65
|
mp1i |
|- ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) /\ ph ) -> ( inr |` B ) Fn B ) |
| 67 |
|
fvco2 |
|- ( ( ( inr |` B ) Fn B /\ z e. B ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) ` z ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` ( ( inr |` B ) ` z ) ) ) |
| 68 |
66 67
|
sylan |
|- ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) /\ ph ) /\ z e. B ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) ` z ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` ( ( inr |` B ) ` z ) ) ) |
| 69 |
|
fvco2 |
|- ( ( ( inr |` B ) Fn B /\ z e. B ) -> ( ( k o. ( inr |` B ) ) ` z ) = ( k ` ( ( inr |` B ) ` z ) ) ) |
| 70 |
66 69
|
sylan |
|- ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) /\ ph ) /\ z e. B ) -> ( ( k o. ( inr |` B ) ) ` z ) = ( k ` ( ( inr |` B ) ` z ) ) ) |
| 71 |
63 68 70
|
3eqtr3d |
|- ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) /\ ph ) /\ z e. B ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` ( ( inr |` B ) ` z ) ) = ( k ` ( ( inr |` B ) ` z ) ) ) |
| 72 |
|
fveq2 |
|- ( y = ( ( inr |` B ) ` z ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` ( ( inr |` B ) ` z ) ) ) |
| 73 |
|
fveq2 |
|- ( y = ( ( inr |` B ) ` z ) -> ( k ` y ) = ( k ` ( ( inr |` B ) ` z ) ) ) |
| 74 |
72 73
|
eqeq12d |
|- ( y = ( ( inr |` B ) ` z ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) <-> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` ( ( inr |` B ) ` z ) ) = ( k ` ( ( inr |` B ) ` z ) ) ) ) |
| 75 |
71 74
|
syl5ibrcom |
|- ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) /\ ph ) /\ z e. B ) -> ( y = ( ( inr |` B ) ` z ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 76 |
61 75
|
sylbid |
|- ( ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) /\ ph ) /\ z e. B ) -> ( y = ( inr ` z ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 77 |
76
|
expimpd |
|- ( ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) /\ ph ) -> ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 78 |
77
|
ex |
|- ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) -> ( ph -> ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) |
| 79 |
78
|
eqcoms |
|- ( ( k o. ( inr |` B ) ) = ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) -> ( ph -> ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) |
| 80 |
57 79
|
biimtrrdi |
|- ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G -> ( ( k o. ( inr |` B ) ) = G -> ( ph -> ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) ) |
| 81 |
80
|
com23 |
|- ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G -> ( ph -> ( ( k o. ( inr |` B ) ) = G -> ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) ) |
| 82 |
81
|
3ad2ant3 |
|- ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) -> ( ph -> ( ( k o. ( inr |` B ) ) = G -> ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) ) |
| 83 |
82
|
impcom |
|- ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> ( ( k o. ( inr |` B ) ) = G -> ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) |
| 84 |
83
|
com12 |
|- ( ( k o. ( inr |` B ) ) = G -> ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) |
| 85 |
84
|
3ad2ant3 |
|- ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) ) |
| 86 |
85
|
impcom |
|- ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 87 |
86
|
com12 |
|- ( ( z e. B /\ y = ( inr ` z ) ) -> ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 88 |
87
|
rexlimiva |
|- ( E. z e. B y = ( inr ` z ) -> ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 89 |
56 88
|
jaoi |
|- ( ( E. z e. A y = ( inl ` z ) \/ E. z e. B y = ( inr ` z ) ) -> ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 90 |
|
djur |
|- ( y e. ( A |_| B ) -> ( E. z e. A y = ( inl ` z ) \/ E. z e. B y = ( inr ` z ) ) ) |
| 91 |
89 90
|
syl11 |
|- ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> ( y e. ( A |_| B ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 92 |
91
|
ralrimiv |
|- ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> A. y e. ( A |_| B ) ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) |
| 93 |
|
ffn |
|- ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) Fn ( A |_| B ) ) |
| 94 |
93
|
3ad2ant1 |
|- ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) Fn ( A |_| B ) ) |
| 95 |
94
|
adantl |
|- ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) Fn ( A |_| B ) ) |
| 96 |
|
ffn |
|- ( k : ( A |_| B ) --> C -> k Fn ( A |_| B ) ) |
| 97 |
96
|
3ad2ant1 |
|- ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> k Fn ( A |_| B ) ) |
| 98 |
|
eqfnfv |
|- ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) Fn ( A |_| B ) /\ k Fn ( A |_| B ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k <-> A. y e. ( A |_| B ) ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 99 |
95 97 98
|
syl2an |
|- ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k <-> A. y e. ( A |_| B ) ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) ` y ) = ( k ` y ) ) ) |
| 100 |
92 99
|
mpbird |
|- ( ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) /\ ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) |
| 101 |
100
|
ex |
|- ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) ) |
| 102 |
101
|
ralrimivw |
|- ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) ) |
| 103 |
24 102
|
jca |
|- ( ( ph /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) /\ A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) ) ) |
| 104 |
103
|
ex |
|- ( ph -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) /\ A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) ) ) ) |
| 105 |
21 22 23 104
|
mp3and |
|- ( ph -> ( ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) : ( A |_| B ) --> C /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inl |` A ) ) = F /\ ( ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) o. ( inr |` B ) ) = G ) /\ A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) = k ) ) ) |
| 106 |
8 19 105
|
rspcedvd |
|- ( ph -> E. h e. _V ( ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) /\ A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> h = k ) ) ) |
| 107 |
|
feq1 |
|- ( h = k -> ( h : ( A |_| B ) --> C <-> k : ( A |_| B ) --> C ) ) |
| 108 |
|
coeq1 |
|- ( h = k -> ( h o. ( inl |` A ) ) = ( k o. ( inl |` A ) ) ) |
| 109 |
108
|
eqeq1d |
|- ( h = k -> ( ( h o. ( inl |` A ) ) = F <-> ( k o. ( inl |` A ) ) = F ) ) |
| 110 |
|
coeq1 |
|- ( h = k -> ( h o. ( inr |` B ) ) = ( k o. ( inr |` B ) ) ) |
| 111 |
110
|
eqeq1d |
|- ( h = k -> ( ( h o. ( inr |` B ) ) = G <-> ( k o. ( inr |` B ) ) = G ) ) |
| 112 |
107 109 111
|
3anbi123d |
|- ( h = k -> ( ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) <-> ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) ) ) |
| 113 |
112
|
reu8 |
|- ( E! h e. _V ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) <-> E. h e. _V ( ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) /\ A. k e. _V ( ( k : ( A |_| B ) --> C /\ ( k o. ( inl |` A ) ) = F /\ ( k o. ( inr |` B ) ) = G ) -> h = k ) ) ) |
| 114 |
106 113
|
sylibr |
|- ( ph -> E! h e. _V ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) ) |
| 115 |
|
reuv |
|- ( E! h e. _V ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) <-> E! h ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) ) |
| 116 |
114 115
|
sylib |
|- ( ph -> E! h ( h : ( A |_| B ) --> C /\ ( h o. ( inl |` A ) ) = F /\ ( h o. ( inr |` B ) ) = G ) ) |