Step |
Hyp |
Ref |
Expression |
1 |
|
updjud.f |
|- ( ph -> F : A --> C ) |
2 |
|
updjud.g |
|- ( ph -> G : B --> C ) |
3 |
|
updjudhf.h |
|- H = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) |
4 |
1 2 3
|
updjudhf |
|- ( ph -> H : ( A |_| B ) --> C ) |
5 |
4
|
ffnd |
|- ( ph -> H Fn ( A |_| B ) ) |
6 |
|
inlresf |
|- ( inl |` A ) : A --> ( A |_| B ) |
7 |
|
ffn |
|- ( ( inl |` A ) : A --> ( A |_| B ) -> ( inl |` A ) Fn A ) |
8 |
6 7
|
mp1i |
|- ( ph -> ( inl |` A ) Fn A ) |
9 |
|
frn |
|- ( ( inl |` A ) : A --> ( A |_| B ) -> ran ( inl |` A ) C_ ( A |_| B ) ) |
10 |
6 9
|
mp1i |
|- ( ph -> ran ( inl |` A ) C_ ( A |_| B ) ) |
11 |
|
fnco |
|- ( ( H Fn ( A |_| B ) /\ ( inl |` A ) Fn A /\ ran ( inl |` A ) C_ ( A |_| B ) ) -> ( H o. ( inl |` A ) ) Fn A ) |
12 |
5 8 10 11
|
syl3anc |
|- ( ph -> ( H o. ( inl |` A ) ) Fn A ) |
13 |
1
|
ffnd |
|- ( ph -> F Fn A ) |
14 |
|
fvco2 |
|- ( ( ( inl |` A ) Fn A /\ a e. A ) -> ( ( H o. ( inl |` A ) ) ` a ) = ( H ` ( ( inl |` A ) ` a ) ) ) |
15 |
8 14
|
sylan |
|- ( ( ph /\ a e. A ) -> ( ( H o. ( inl |` A ) ) ` a ) = ( H ` ( ( inl |` A ) ` a ) ) ) |
16 |
|
fvres |
|- ( a e. A -> ( ( inl |` A ) ` a ) = ( inl ` a ) ) |
17 |
16
|
adantl |
|- ( ( ph /\ a e. A ) -> ( ( inl |` A ) ` a ) = ( inl ` a ) ) |
18 |
17
|
fveq2d |
|- ( ( ph /\ a e. A ) -> ( H ` ( ( inl |` A ) ` a ) ) = ( H ` ( inl ` a ) ) ) |
19 |
|
fveqeq2 |
|- ( x = ( inl ` a ) -> ( ( 1st ` x ) = (/) <-> ( 1st ` ( inl ` a ) ) = (/) ) ) |
20 |
|
2fveq3 |
|- ( x = ( inl ` a ) -> ( F ` ( 2nd ` x ) ) = ( F ` ( 2nd ` ( inl ` a ) ) ) ) |
21 |
|
2fveq3 |
|- ( x = ( inl ` a ) -> ( G ` ( 2nd ` x ) ) = ( G ` ( 2nd ` ( inl ` a ) ) ) ) |
22 |
19 20 21
|
ifbieq12d |
|- ( x = ( inl ` a ) -> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) = if ( ( 1st ` ( inl ` a ) ) = (/) , ( F ` ( 2nd ` ( inl ` a ) ) ) , ( G ` ( 2nd ` ( inl ` a ) ) ) ) ) |
23 |
22
|
adantl |
|- ( ( ( ph /\ a e. A ) /\ x = ( inl ` a ) ) -> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) = if ( ( 1st ` ( inl ` a ) ) = (/) , ( F ` ( 2nd ` ( inl ` a ) ) ) , ( G ` ( 2nd ` ( inl ` a ) ) ) ) ) |
24 |
|
1stinl |
|- ( a e. A -> ( 1st ` ( inl ` a ) ) = (/) ) |
25 |
24
|
adantl |
|- ( ( ph /\ a e. A ) -> ( 1st ` ( inl ` a ) ) = (/) ) |
26 |
25
|
adantr |
|- ( ( ( ph /\ a e. A ) /\ x = ( inl ` a ) ) -> ( 1st ` ( inl ` a ) ) = (/) ) |
27 |
26
|
iftrued |
|- ( ( ( ph /\ a e. A ) /\ x = ( inl ` a ) ) -> if ( ( 1st ` ( inl ` a ) ) = (/) , ( F ` ( 2nd ` ( inl ` a ) ) ) , ( G ` ( 2nd ` ( inl ` a ) ) ) ) = ( F ` ( 2nd ` ( inl ` a ) ) ) ) |
28 |
23 27
|
eqtrd |
|- ( ( ( ph /\ a e. A ) /\ x = ( inl ` a ) ) -> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) = ( F ` ( 2nd ` ( inl ` a ) ) ) ) |
29 |
|
djulcl |
|- ( a e. A -> ( inl ` a ) e. ( A |_| B ) ) |
30 |
29
|
adantl |
|- ( ( ph /\ a e. A ) -> ( inl ` a ) e. ( A |_| B ) ) |
31 |
1
|
adantr |
|- ( ( ph /\ a e. A ) -> F : A --> C ) |
32 |
|
2ndinl |
|- ( a e. A -> ( 2nd ` ( inl ` a ) ) = a ) |
33 |
32
|
adantl |
|- ( ( ph /\ a e. A ) -> ( 2nd ` ( inl ` a ) ) = a ) |
34 |
|
simpr |
|- ( ( ph /\ a e. A ) -> a e. A ) |
35 |
33 34
|
eqeltrd |
|- ( ( ph /\ a e. A ) -> ( 2nd ` ( inl ` a ) ) e. A ) |
36 |
31 35
|
ffvelrnd |
|- ( ( ph /\ a e. A ) -> ( F ` ( 2nd ` ( inl ` a ) ) ) e. C ) |
37 |
3 28 30 36
|
fvmptd2 |
|- ( ( ph /\ a e. A ) -> ( H ` ( inl ` a ) ) = ( F ` ( 2nd ` ( inl ` a ) ) ) ) |
38 |
18 37
|
eqtrd |
|- ( ( ph /\ a e. A ) -> ( H ` ( ( inl |` A ) ` a ) ) = ( F ` ( 2nd ` ( inl ` a ) ) ) ) |
39 |
33
|
fveq2d |
|- ( ( ph /\ a e. A ) -> ( F ` ( 2nd ` ( inl ` a ) ) ) = ( F ` a ) ) |
40 |
15 38 39
|
3eqtrd |
|- ( ( ph /\ a e. A ) -> ( ( H o. ( inl |` A ) ) ` a ) = ( F ` a ) ) |
41 |
12 13 40
|
eqfnfvd |
|- ( ph -> ( H o. ( inl |` A ) ) = F ) |