Step |
Hyp |
Ref |
Expression |
1 |
|
updjud.f |
|- ( ph -> F : A --> C ) |
2 |
|
updjud.g |
|- ( ph -> G : B --> C ) |
3 |
|
updjudhf.h |
|- H = ( x e. ( A |_| B ) |-> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) ) |
4 |
1 2 3
|
updjudhf |
|- ( ph -> H : ( A |_| B ) --> C ) |
5 |
4
|
ffnd |
|- ( ph -> H Fn ( A |_| B ) ) |
6 |
|
inrresf |
|- ( inr |` B ) : B --> ( A |_| B ) |
7 |
|
ffn |
|- ( ( inr |` B ) : B --> ( A |_| B ) -> ( inr |` B ) Fn B ) |
8 |
6 7
|
mp1i |
|- ( ph -> ( inr |` B ) Fn B ) |
9 |
|
frn |
|- ( ( inr |` B ) : B --> ( A |_| B ) -> ran ( inr |` B ) C_ ( A |_| B ) ) |
10 |
6 9
|
mp1i |
|- ( ph -> ran ( inr |` B ) C_ ( A |_| B ) ) |
11 |
|
fnco |
|- ( ( H Fn ( A |_| B ) /\ ( inr |` B ) Fn B /\ ran ( inr |` B ) C_ ( A |_| B ) ) -> ( H o. ( inr |` B ) ) Fn B ) |
12 |
5 8 10 11
|
syl3anc |
|- ( ph -> ( H o. ( inr |` B ) ) Fn B ) |
13 |
2
|
ffnd |
|- ( ph -> G Fn B ) |
14 |
|
fvco2 |
|- ( ( ( inr |` B ) Fn B /\ b e. B ) -> ( ( H o. ( inr |` B ) ) ` b ) = ( H ` ( ( inr |` B ) ` b ) ) ) |
15 |
8 14
|
sylan |
|- ( ( ph /\ b e. B ) -> ( ( H o. ( inr |` B ) ) ` b ) = ( H ` ( ( inr |` B ) ` b ) ) ) |
16 |
|
fvres |
|- ( b e. B -> ( ( inr |` B ) ` b ) = ( inr ` b ) ) |
17 |
16
|
adantl |
|- ( ( ph /\ b e. B ) -> ( ( inr |` B ) ` b ) = ( inr ` b ) ) |
18 |
17
|
fveq2d |
|- ( ( ph /\ b e. B ) -> ( H ` ( ( inr |` B ) ` b ) ) = ( H ` ( inr ` b ) ) ) |
19 |
|
fveqeq2 |
|- ( x = ( inr ` b ) -> ( ( 1st ` x ) = (/) <-> ( 1st ` ( inr ` b ) ) = (/) ) ) |
20 |
|
2fveq3 |
|- ( x = ( inr ` b ) -> ( F ` ( 2nd ` x ) ) = ( F ` ( 2nd ` ( inr ` b ) ) ) ) |
21 |
|
2fveq3 |
|- ( x = ( inr ` b ) -> ( G ` ( 2nd ` x ) ) = ( G ` ( 2nd ` ( inr ` b ) ) ) ) |
22 |
19 20 21
|
ifbieq12d |
|- ( x = ( inr ` b ) -> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) = if ( ( 1st ` ( inr ` b ) ) = (/) , ( F ` ( 2nd ` ( inr ` b ) ) ) , ( G ` ( 2nd ` ( inr ` b ) ) ) ) ) |
23 |
22
|
adantl |
|- ( ( ( ph /\ b e. B ) /\ x = ( inr ` b ) ) -> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) = if ( ( 1st ` ( inr ` b ) ) = (/) , ( F ` ( 2nd ` ( inr ` b ) ) ) , ( G ` ( 2nd ` ( inr ` b ) ) ) ) ) |
24 |
|
1stinr |
|- ( b e. B -> ( 1st ` ( inr ` b ) ) = 1o ) |
25 |
|
1n0 |
|- 1o =/= (/) |
26 |
25
|
neii |
|- -. 1o = (/) |
27 |
|
eqeq1 |
|- ( ( 1st ` ( inr ` b ) ) = 1o -> ( ( 1st ` ( inr ` b ) ) = (/) <-> 1o = (/) ) ) |
28 |
26 27
|
mtbiri |
|- ( ( 1st ` ( inr ` b ) ) = 1o -> -. ( 1st ` ( inr ` b ) ) = (/) ) |
29 |
24 28
|
syl |
|- ( b e. B -> -. ( 1st ` ( inr ` b ) ) = (/) ) |
30 |
29
|
adantl |
|- ( ( ph /\ b e. B ) -> -. ( 1st ` ( inr ` b ) ) = (/) ) |
31 |
30
|
adantr |
|- ( ( ( ph /\ b e. B ) /\ x = ( inr ` b ) ) -> -. ( 1st ` ( inr ` b ) ) = (/) ) |
32 |
31
|
iffalsed |
|- ( ( ( ph /\ b e. B ) /\ x = ( inr ` b ) ) -> if ( ( 1st ` ( inr ` b ) ) = (/) , ( F ` ( 2nd ` ( inr ` b ) ) ) , ( G ` ( 2nd ` ( inr ` b ) ) ) ) = ( G ` ( 2nd ` ( inr ` b ) ) ) ) |
33 |
23 32
|
eqtrd |
|- ( ( ( ph /\ b e. B ) /\ x = ( inr ` b ) ) -> if ( ( 1st ` x ) = (/) , ( F ` ( 2nd ` x ) ) , ( G ` ( 2nd ` x ) ) ) = ( G ` ( 2nd ` ( inr ` b ) ) ) ) |
34 |
|
djurcl |
|- ( b e. B -> ( inr ` b ) e. ( A |_| B ) ) |
35 |
34
|
adantl |
|- ( ( ph /\ b e. B ) -> ( inr ` b ) e. ( A |_| B ) ) |
36 |
2
|
adantr |
|- ( ( ph /\ b e. B ) -> G : B --> C ) |
37 |
|
2ndinr |
|- ( b e. B -> ( 2nd ` ( inr ` b ) ) = b ) |
38 |
37
|
adantl |
|- ( ( ph /\ b e. B ) -> ( 2nd ` ( inr ` b ) ) = b ) |
39 |
|
simpr |
|- ( ( ph /\ b e. B ) -> b e. B ) |
40 |
38 39
|
eqeltrd |
|- ( ( ph /\ b e. B ) -> ( 2nd ` ( inr ` b ) ) e. B ) |
41 |
36 40
|
ffvelrnd |
|- ( ( ph /\ b e. B ) -> ( G ` ( 2nd ` ( inr ` b ) ) ) e. C ) |
42 |
3 33 35 41
|
fvmptd2 |
|- ( ( ph /\ b e. B ) -> ( H ` ( inr ` b ) ) = ( G ` ( 2nd ` ( inr ` b ) ) ) ) |
43 |
18 42
|
eqtrd |
|- ( ( ph /\ b e. B ) -> ( H ` ( ( inr |` B ) ` b ) ) = ( G ` ( 2nd ` ( inr ` b ) ) ) ) |
44 |
38
|
fveq2d |
|- ( ( ph /\ b e. B ) -> ( G ` ( 2nd ` ( inr ` b ) ) ) = ( G ` b ) ) |
45 |
15 43 44
|
3eqtrd |
|- ( ( ph /\ b e. B ) -> ( ( H o. ( inr |` B ) ) ` b ) = ( G ` b ) ) |
46 |
12 13 45
|
eqfnfvd |
|- ( ph -> ( H o. ( inr |` B ) ) = G ) |