| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upeu3.i |
|- ( ph -> I = ( Iso ` D ) ) |
| 2 |
|
upeu3.o |
|- ( ph -> .o. = ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` Y ) ) ) |
| 3 |
|
upeu3.x |
|- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) |
| 4 |
|
upeu3.y |
|- ( ph -> Y ( <. F , G >. ( D UP E ) W ) N ) |
| 5 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 6 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 7 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 8 |
|
eqid |
|- ( Hom ` E ) = ( Hom ` E ) |
| 9 |
|
eqid |
|- ( comp ` E ) = ( comp ` E ) |
| 10 |
3
|
uprcl2 |
|- ( ph -> F ( D Func E ) G ) |
| 11 |
3 5
|
uprcl4 |
|- ( ph -> X e. ( Base ` D ) ) |
| 12 |
4 5
|
uprcl4 |
|- ( ph -> Y e. ( Base ` D ) ) |
| 13 |
3 6
|
uprcl3 |
|- ( ph -> W e. ( Base ` E ) ) |
| 14 |
3 8
|
uprcl5 |
|- ( ph -> M e. ( W ( Hom ` E ) ( F ` X ) ) ) |
| 15 |
5 7 8 9 3
|
isup2 |
|- ( ph -> A. y e. ( Base ` D ) A. g e. ( W ( Hom ` E ) ( F ` y ) ) E! k e. ( X ( Hom ` D ) y ) g = ( ( ( X G y ) ` k ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` y ) ) M ) ) |
| 16 |
4 8
|
uprcl5 |
|- ( ph -> N e. ( W ( Hom ` E ) ( F ` Y ) ) ) |
| 17 |
5 7 8 9 4
|
isup2 |
|- ( ph -> A. y e. ( Base ` D ) A. g e. ( W ( Hom ` E ) ( F ` y ) ) E! k e. ( Y ( Hom ` D ) y ) g = ( ( ( Y G y ) ` k ) ( <. W , ( F ` Y ) >. ( comp ` E ) ( F ` y ) ) N ) ) |
| 18 |
5 6 7 8 9 10 11 12 13 14 15 16 17
|
upeu |
|- ( ph -> E! r e. ( X ( Iso ` D ) Y ) N = ( ( ( X G Y ) ` r ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` Y ) ) M ) ) |
| 19 |
1
|
oveqd |
|- ( ph -> ( X I Y ) = ( X ( Iso ` D ) Y ) ) |
| 20 |
2
|
oveqd |
|- ( ph -> ( ( ( X G Y ) ` r ) .o. M ) = ( ( ( X G Y ) ` r ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` Y ) ) M ) ) |
| 21 |
20
|
eqeq2d |
|- ( ph -> ( N = ( ( ( X G Y ) ` r ) .o. M ) <-> N = ( ( ( X G Y ) ` r ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` Y ) ) M ) ) ) |
| 22 |
19 21
|
reueqbidv |
|- ( ph -> ( E! r e. ( X I Y ) N = ( ( ( X G Y ) ` r ) .o. M ) <-> E! r e. ( X ( Iso ` D ) Y ) N = ( ( ( X G Y ) ` r ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` Y ) ) M ) ) ) |
| 23 |
18 22
|
mpbird |
|- ( ph -> E! r e. ( X I Y ) N = ( ( ( X G Y ) ` r ) .o. M ) ) |