| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upeu3.i |
|- ( ph -> I = ( Iso ` D ) ) |
| 2 |
|
upeu3.o |
|- ( ph -> .o. = ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` Y ) ) ) |
| 3 |
|
upeu3.x |
|- ( ph -> X ( <. F , G >. ( D UP E ) W ) M ) |
| 4 |
|
upeu4.k |
|- ( ph -> K e. ( X I Y ) ) |
| 5 |
|
upeu4.n |
|- ( ph -> N = ( ( ( X G Y ) ` K ) .o. M ) ) |
| 6 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 7 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
| 8 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 9 |
|
eqid |
|- ( Hom ` E ) = ( Hom ` E ) |
| 10 |
|
eqid |
|- ( comp ` E ) = ( comp ` E ) |
| 11 |
3
|
uprcl2 |
|- ( ph -> F ( D Func E ) G ) |
| 12 |
3 6
|
uprcl4 |
|- ( ph -> X e. ( Base ` D ) ) |
| 13 |
11
|
funcrcl2 |
|- ( ph -> D e. Cat ) |
| 14 |
|
isofn |
|- ( D e. Cat -> ( Iso ` D ) Fn ( ( Base ` D ) X. ( Base ` D ) ) ) |
| 15 |
13 14
|
syl |
|- ( ph -> ( Iso ` D ) Fn ( ( Base ` D ) X. ( Base ` D ) ) ) |
| 16 |
1
|
fneq1d |
|- ( ph -> ( I Fn ( ( Base ` D ) X. ( Base ` D ) ) <-> ( Iso ` D ) Fn ( ( Base ` D ) X. ( Base ` D ) ) ) ) |
| 17 |
15 16
|
mpbird |
|- ( ph -> I Fn ( ( Base ` D ) X. ( Base ` D ) ) ) |
| 18 |
|
fnov |
|- ( I Fn ( ( Base ` D ) X. ( Base ` D ) ) <-> I = ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x I y ) ) ) |
| 19 |
17 18
|
sylib |
|- ( ph -> I = ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x I y ) ) ) |
| 20 |
19
|
oveqd |
|- ( ph -> ( X I Y ) = ( X ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x I y ) ) Y ) ) |
| 21 |
4 20
|
eleqtrd |
|- ( ph -> K e. ( X ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x I y ) ) Y ) ) |
| 22 |
|
eqid |
|- ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x I y ) ) = ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x I y ) ) |
| 23 |
22
|
elmpocl2 |
|- ( K e. ( X ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x I y ) ) Y ) -> Y e. ( Base ` D ) ) |
| 24 |
21 23
|
syl |
|- ( ph -> Y e. ( Base ` D ) ) |
| 25 |
3 7
|
uprcl3 |
|- ( ph -> W e. ( Base ` E ) ) |
| 26 |
3 9
|
uprcl5 |
|- ( ph -> M e. ( W ( Hom ` E ) ( F ` X ) ) ) |
| 27 |
6 8 9 10 3
|
isup2 |
|- ( ph -> A. x e. ( Base ` D ) A. f e. ( W ( Hom ` E ) ( F ` x ) ) E! k e. ( X ( Hom ` D ) x ) f = ( ( ( X G x ) ` k ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` x ) ) M ) ) |
| 28 |
|
eqid |
|- ( Iso ` D ) = ( Iso ` D ) |
| 29 |
1
|
oveqd |
|- ( ph -> ( X I Y ) = ( X ( Iso ` D ) Y ) ) |
| 30 |
4 29
|
eleqtrd |
|- ( ph -> K e. ( X ( Iso ` D ) Y ) ) |
| 31 |
2
|
oveqd |
|- ( ph -> ( ( ( X G Y ) ` K ) .o. M ) = ( ( ( X G Y ) ` K ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` Y ) ) M ) ) |
| 32 |
5 31
|
eqtrd |
|- ( ph -> N = ( ( ( X G Y ) ` K ) ( <. W , ( F ` X ) >. ( comp ` E ) ( F ` Y ) ) M ) ) |
| 33 |
6 7 8 9 10 11 12 24 25 26 27 28 30 32
|
upeu2 |
|- ( ph -> ( N e. ( W ( Hom ` E ) ( F ` Y ) ) /\ A. y e. ( Base ` D ) A. g e. ( W ( Hom ` E ) ( F ` y ) ) E! k e. ( Y ( Hom ` D ) y ) g = ( ( ( Y G y ) ` k ) ( <. W , ( F ` Y ) >. ( comp ` E ) ( F ` y ) ) N ) ) ) |
| 34 |
33
|
simprd |
|- ( ph -> A. y e. ( Base ` D ) A. g e. ( W ( Hom ` E ) ( F ` y ) ) E! k e. ( Y ( Hom ` D ) y ) g = ( ( ( Y G y ) ` k ) ( <. W , ( F ` Y ) >. ( comp ` E ) ( F ` y ) ) N ) ) |
| 35 |
33
|
simpld |
|- ( ph -> N e. ( W ( Hom ` E ) ( F ` Y ) ) ) |
| 36 |
6 7 8 9 10 25 11 24 35
|
isup |
|- ( ph -> ( Y ( <. F , G >. ( D UP E ) W ) N <-> A. y e. ( Base ` D ) A. g e. ( W ( Hom ` E ) ( F ` y ) ) E! k e. ( Y ( Hom ` D ) y ) g = ( ( ( Y G y ) ` k ) ( <. W , ( F ` Y ) >. ( comp ` E ) ( F ` y ) ) N ) ) ) |
| 37 |
34 36
|
mpbird |
|- ( ph -> Y ( <. F , G >. ( D UP E ) W ) N ) |