| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upgr1e.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | upgr1e.a |  |-  ( ph -> A e. X ) | 
						
							| 3 |  | upgr1e.b |  |-  ( ph -> B e. V ) | 
						
							| 4 |  | upgr1e.c |  |-  ( ph -> C e. V ) | 
						
							| 5 |  | upgr1e.e |  |-  ( ph -> ( iEdg ` G ) = { <. A , { B , C } >. } ) | 
						
							| 6 |  | prex |  |-  { B , C } e. _V | 
						
							| 7 | 6 | snid |  |-  { B , C } e. { { B , C } } | 
						
							| 8 | 7 | a1i |  |-  ( ph -> { B , C } e. { { B , C } } ) | 
						
							| 9 | 2 8 | fsnd |  |-  ( ph -> { <. A , { B , C } >. } : { A } --> { { B , C } } ) | 
						
							| 10 | 3 4 | prssd |  |-  ( ph -> { B , C } C_ V ) | 
						
							| 11 | 10 1 | sseqtrdi |  |-  ( ph -> { B , C } C_ ( Vtx ` G ) ) | 
						
							| 12 | 6 | elpw |  |-  ( { B , C } e. ~P ( Vtx ` G ) <-> { B , C } C_ ( Vtx ` G ) ) | 
						
							| 13 | 11 12 | sylibr |  |-  ( ph -> { B , C } e. ~P ( Vtx ` G ) ) | 
						
							| 14 | 13 3 | upgr1elem |  |-  ( ph -> { { B , C } } C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 15 | 9 14 | fssd |  |-  ( ph -> { <. A , { B , C } >. } : { A } --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 16 | 15 | ffdmd |  |-  ( ph -> { <. A , { B , C } >. } : dom { <. A , { B , C } >. } --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 17 | 5 | dmeqd |  |-  ( ph -> dom ( iEdg ` G ) = dom { <. A , { B , C } >. } ) | 
						
							| 18 | 5 17 | feq12d |  |-  ( ph -> ( ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } <-> { <. A , { B , C } >. } : dom { <. A , { B , C } >. } --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) | 
						
							| 19 | 16 18 | mpbird |  |-  ( ph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 20 | 1 | 1vgrex |  |-  ( B e. V -> G e. _V ) | 
						
							| 21 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 22 |  | eqid |  |-  ( iEdg ` G ) = ( iEdg ` G ) | 
						
							| 23 | 21 22 | isupgr |  |-  ( G e. _V -> ( G e. UPGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) | 
						
							| 24 | 3 20 23 | 3syl |  |-  ( ph -> ( G e. UPGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) | 
						
							| 25 | 19 24 | mpbird |  |-  ( ph -> G e. UPGraph ) |