| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upgr1elem.s |  |-  ( ph -> { B , C } e. S ) | 
						
							| 2 |  | upgr1elem.b |  |-  ( ph -> B e. W ) | 
						
							| 3 |  | fveq2 |  |-  ( x = { B , C } -> ( # ` x ) = ( # ` { B , C } ) ) | 
						
							| 4 | 3 | breq1d |  |-  ( x = { B , C } -> ( ( # ` x ) <_ 2 <-> ( # ` { B , C } ) <_ 2 ) ) | 
						
							| 5 |  | prnzg |  |-  ( B e. W -> { B , C } =/= (/) ) | 
						
							| 6 | 2 5 | syl |  |-  ( ph -> { B , C } =/= (/) ) | 
						
							| 7 |  | eldifsn |  |-  ( { B , C } e. ( S \ { (/) } ) <-> ( { B , C } e. S /\ { B , C } =/= (/) ) ) | 
						
							| 8 | 1 6 7 | sylanbrc |  |-  ( ph -> { B , C } e. ( S \ { (/) } ) ) | 
						
							| 9 |  | hashprlei |  |-  ( { B , C } e. Fin /\ ( # ` { B , C } ) <_ 2 ) | 
						
							| 10 | 9 | simpri |  |-  ( # ` { B , C } ) <_ 2 | 
						
							| 11 | 10 | a1i |  |-  ( ph -> ( # ` { B , C } ) <_ 2 ) | 
						
							| 12 | 4 8 11 | elrabd |  |-  ( ph -> { B , C } e. { x e. ( S \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 13 | 12 | snssd |  |-  ( ph -> { { B , C } } C_ { x e. ( S \ { (/) } ) | ( # ` x ) <_ 2 } ) |