Step |
Hyp |
Ref |
Expression |
1 |
|
upgr1wlkd.p |
|- P = <" X Y "> |
2 |
|
upgr1wlkd.f |
|- F = <" J "> |
3 |
|
upgr1wlkd.x |
|- ( ph -> X e. ( Vtx ` G ) ) |
4 |
|
upgr1wlkd.y |
|- ( ph -> Y e. ( Vtx ` G ) ) |
5 |
|
upgr1wlkd.j |
|- ( ph -> ( ( iEdg ` G ) ` J ) = { X , Y } ) |
6 |
|
ssid |
|- { X , Y } C_ { X , Y } |
7 |
|
sseq2 |
|- ( ( ( iEdg ` G ) ` J ) = { X , Y } -> ( { X , Y } C_ ( ( iEdg ` G ) ` J ) <-> { X , Y } C_ { X , Y } ) ) |
8 |
7
|
adantl |
|- ( ( ( ph /\ X =/= Y ) /\ ( ( iEdg ` G ) ` J ) = { X , Y } ) -> ( { X , Y } C_ ( ( iEdg ` G ) ` J ) <-> { X , Y } C_ { X , Y } ) ) |
9 |
6 8
|
mpbiri |
|- ( ( ( ph /\ X =/= Y ) /\ ( ( iEdg ` G ) ` J ) = { X , Y } ) -> { X , Y } C_ ( ( iEdg ` G ) ` J ) ) |
10 |
5 9
|
mpidan |
|- ( ( ph /\ X =/= Y ) -> { X , Y } C_ ( ( iEdg ` G ) ` J ) ) |