| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2pthnloop.i |  |-  I = ( iEdg ` G ) | 
						
							| 2 | 1 | 2pthnloop |  |-  ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) | 
						
							| 3 | 2 | 3adant1 |  |-  ( ( G e. UPGraph /\ F ( Paths ` G ) P /\ 1 < ( # ` F ) ) -> A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) | 
						
							| 4 |  | pthiswlk |  |-  ( F ( Paths ` G ) P -> F ( Walks ` G ) P ) | 
						
							| 5 | 1 | wlkf |  |-  ( F ( Walks ` G ) P -> F e. Word dom I ) | 
						
							| 6 |  | simp2 |  |-  ( ( F e. Word dom I /\ G e. UPGraph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> G e. UPGraph ) | 
						
							| 7 |  | wrdsymbcl |  |-  ( ( F e. Word dom I /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` i ) e. dom I ) | 
						
							| 8 | 1 | upgrle2 |  |-  ( ( G e. UPGraph /\ ( F ` i ) e. dom I ) -> ( # ` ( I ` ( F ` i ) ) ) <_ 2 ) | 
						
							| 9 | 6 7 8 | 3imp3i2an |  |-  ( ( F e. Word dom I /\ G e. UPGraph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( # ` ( I ` ( F ` i ) ) ) <_ 2 ) | 
						
							| 10 |  | fvex |  |-  ( I ` ( F ` i ) ) e. _V | 
						
							| 11 |  | hashxnn0 |  |-  ( ( I ` ( F ` i ) ) e. _V -> ( # ` ( I ` ( F ` i ) ) ) e. NN0* ) | 
						
							| 12 |  | xnn0xr |  |-  ( ( # ` ( I ` ( F ` i ) ) ) e. NN0* -> ( # ` ( I ` ( F ` i ) ) ) e. RR* ) | 
						
							| 13 | 10 11 12 | mp2b |  |-  ( # ` ( I ` ( F ` i ) ) ) e. RR* | 
						
							| 14 |  | 2re |  |-  2 e. RR | 
						
							| 15 | 14 | rexri |  |-  2 e. RR* | 
						
							| 16 | 13 15 | pm3.2i |  |-  ( ( # ` ( I ` ( F ` i ) ) ) e. RR* /\ 2 e. RR* ) | 
						
							| 17 |  | xrletri3 |  |-  ( ( ( # ` ( I ` ( F ` i ) ) ) e. RR* /\ 2 e. RR* ) -> ( ( # ` ( I ` ( F ` i ) ) ) = 2 <-> ( ( # ` ( I ` ( F ` i ) ) ) <_ 2 /\ 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) | 
						
							| 18 | 16 17 | mp1i |  |-  ( ( F e. Word dom I /\ G e. UPGraph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( ( # ` ( I ` ( F ` i ) ) ) = 2 <-> ( ( # ` ( I ` ( F ` i ) ) ) <_ 2 /\ 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) ) ) | 
						
							| 19 | 18 | biimprd |  |-  ( ( F e. Word dom I /\ G e. UPGraph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( # ` ( I ` ( F ` i ) ) ) <_ 2 /\ 2 <_ ( # ` ( I ` ( F ` i ) ) ) ) -> ( # ` ( I ` ( F ` i ) ) ) = 2 ) ) | 
						
							| 20 | 9 19 | mpand |  |-  ( ( F e. Word dom I /\ G e. UPGraph /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( 2 <_ ( # ` ( I ` ( F ` i ) ) ) -> ( # ` ( I ` ( F ` i ) ) ) = 2 ) ) | 
						
							| 21 | 20 | 3exp |  |-  ( F e. Word dom I -> ( G e. UPGraph -> ( i e. ( 0 ..^ ( # ` F ) ) -> ( 2 <_ ( # ` ( I ` ( F ` i ) ) ) -> ( # ` ( I ` ( F ` i ) ) ) = 2 ) ) ) ) | 
						
							| 22 | 4 5 21 | 3syl |  |-  ( F ( Paths ` G ) P -> ( G e. UPGraph -> ( i e. ( 0 ..^ ( # ` F ) ) -> ( 2 <_ ( # ` ( I ` ( F ` i ) ) ) -> ( # ` ( I ` ( F ` i ) ) ) = 2 ) ) ) ) | 
						
							| 23 | 22 | impcom |  |-  ( ( G e. UPGraph /\ F ( Paths ` G ) P ) -> ( i e. ( 0 ..^ ( # ` F ) ) -> ( 2 <_ ( # ` ( I ` ( F ` i ) ) ) -> ( # ` ( I ` ( F ` i ) ) ) = 2 ) ) ) | 
						
							| 24 | 23 | 3adant3 |  |-  ( ( G e. UPGraph /\ F ( Paths ` G ) P /\ 1 < ( # ` F ) ) -> ( i e. ( 0 ..^ ( # ` F ) ) -> ( 2 <_ ( # ` ( I ` ( F ` i ) ) ) -> ( # ` ( I ` ( F ` i ) ) ) = 2 ) ) ) | 
						
							| 25 | 24 | imp |  |-  ( ( ( G e. UPGraph /\ F ( Paths ` G ) P /\ 1 < ( # ` F ) ) /\ i e. ( 0 ..^ ( # ` F ) ) ) -> ( 2 <_ ( # ` ( I ` ( F ` i ) ) ) -> ( # ` ( I ` ( F ` i ) ) ) = 2 ) ) | 
						
							| 26 | 25 | ralimdva |  |-  ( ( G e. UPGraph /\ F ( Paths ` G ) P /\ 1 < ( # ` F ) ) -> ( A. i e. ( 0 ..^ ( # ` F ) ) 2 <_ ( # ` ( I ` ( F ` i ) ) ) -> A. i e. ( 0 ..^ ( # ` F ) ) ( # ` ( I ` ( F ` i ) ) ) = 2 ) ) | 
						
							| 27 | 3 26 | mpd |  |-  ( ( G e. UPGraph /\ F ( Paths ` G ) P /\ 1 < ( # ` F ) ) -> A. i e. ( 0 ..^ ( # ` F ) ) ( # ` ( I ` ( F ` i ) ) ) = 2 ) |