Step |
Hyp |
Ref |
Expression |
1 |
|
upgr2wlk.v |
|- V = ( Vtx ` G ) |
2 |
|
upgr2wlk.i |
|- I = ( iEdg ` G ) |
3 |
1 2
|
upgriswlk |
|- ( G e. UPGraph -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
4 |
3
|
anbi1d |
|- ( G e. UPGraph -> ( ( F ( Walks ` G ) P /\ ( # ` F ) = 2 ) <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) /\ ( # ` F ) = 2 ) ) ) |
5 |
|
iswrdb |
|- ( F e. Word dom I <-> F : ( 0 ..^ ( # ` F ) ) --> dom I ) |
6 |
|
oveq2 |
|- ( ( # ` F ) = 2 -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 2 ) ) |
7 |
6
|
feq2d |
|- ( ( # ` F ) = 2 -> ( F : ( 0 ..^ ( # ` F ) ) --> dom I <-> F : ( 0 ..^ 2 ) --> dom I ) ) |
8 |
5 7
|
syl5bb |
|- ( ( # ` F ) = 2 -> ( F e. Word dom I <-> F : ( 0 ..^ 2 ) --> dom I ) ) |
9 |
|
oveq2 |
|- ( ( # ` F ) = 2 -> ( 0 ... ( # ` F ) ) = ( 0 ... 2 ) ) |
10 |
9
|
feq2d |
|- ( ( # ` F ) = 2 -> ( P : ( 0 ... ( # ` F ) ) --> V <-> P : ( 0 ... 2 ) --> V ) ) |
11 |
|
fzo0to2pr |
|- ( 0 ..^ 2 ) = { 0 , 1 } |
12 |
6 11
|
eqtrdi |
|- ( ( # ` F ) = 2 -> ( 0 ..^ ( # ` F ) ) = { 0 , 1 } ) |
13 |
12
|
raleqdv |
|- ( ( # ` F ) = 2 -> ( A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } <-> A. k e. { 0 , 1 } ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
14 |
|
2wlklem |
|- ( A. k e. { 0 , 1 } ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } <-> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) |
15 |
13 14
|
bitrdi |
|- ( ( # ` F ) = 2 -> ( A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } <-> ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) |
16 |
8 10 15
|
3anbi123d |
|- ( ( # ` F ) = 2 -> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) <-> ( F : ( 0 ..^ 2 ) --> dom I /\ P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) ) |
17 |
16
|
adantl |
|- ( ( G e. UPGraph /\ ( # ` F ) = 2 ) -> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) <-> ( F : ( 0 ..^ 2 ) --> dom I /\ P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) ) |
18 |
|
3anass |
|- ( ( F : ( 0 ..^ 2 ) --> dom I /\ P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) <-> ( F : ( 0 ..^ 2 ) --> dom I /\ ( P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) ) |
19 |
17 18
|
bitrdi |
|- ( ( G e. UPGraph /\ ( # ` F ) = 2 ) -> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) <-> ( F : ( 0 ..^ 2 ) --> dom I /\ ( P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) ) ) |
20 |
19
|
ex |
|- ( G e. UPGraph -> ( ( # ` F ) = 2 -> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) <-> ( F : ( 0 ..^ 2 ) --> dom I /\ ( P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) ) ) ) |
21 |
20
|
pm5.32rd |
|- ( G e. UPGraph -> ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) /\ ( # ` F ) = 2 ) <-> ( ( F : ( 0 ..^ 2 ) --> dom I /\ ( P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) /\ ( # ` F ) = 2 ) ) ) |
22 |
|
3anass |
|- ( ( ( F : ( 0 ..^ 2 ) --> dom I /\ ( # ` F ) = 2 ) /\ P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) <-> ( ( F : ( 0 ..^ 2 ) --> dom I /\ ( # ` F ) = 2 ) /\ ( P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) ) |
23 |
|
an32 |
|- ( ( ( F : ( 0 ..^ 2 ) --> dom I /\ ( # ` F ) = 2 ) /\ ( P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) <-> ( ( F : ( 0 ..^ 2 ) --> dom I /\ ( P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) /\ ( # ` F ) = 2 ) ) |
24 |
22 23
|
bitri |
|- ( ( ( F : ( 0 ..^ 2 ) --> dom I /\ ( # ` F ) = 2 ) /\ P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) <-> ( ( F : ( 0 ..^ 2 ) --> dom I /\ ( P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) /\ ( # ` F ) = 2 ) ) |
25 |
21 24
|
bitr4di |
|- ( G e. UPGraph -> ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) /\ ( # ` F ) = 2 ) <-> ( ( F : ( 0 ..^ 2 ) --> dom I /\ ( # ` F ) = 2 ) /\ P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) ) |
26 |
|
2nn0 |
|- 2 e. NN0 |
27 |
|
fnfzo0hash |
|- ( ( 2 e. NN0 /\ F : ( 0 ..^ 2 ) --> dom I ) -> ( # ` F ) = 2 ) |
28 |
26 27
|
mpan |
|- ( F : ( 0 ..^ 2 ) --> dom I -> ( # ` F ) = 2 ) |
29 |
28
|
pm4.71i |
|- ( F : ( 0 ..^ 2 ) --> dom I <-> ( F : ( 0 ..^ 2 ) --> dom I /\ ( # ` F ) = 2 ) ) |
30 |
29
|
bicomi |
|- ( ( F : ( 0 ..^ 2 ) --> dom I /\ ( # ` F ) = 2 ) <-> F : ( 0 ..^ 2 ) --> dom I ) |
31 |
30
|
a1i |
|- ( G e. UPGraph -> ( ( F : ( 0 ..^ 2 ) --> dom I /\ ( # ` F ) = 2 ) <-> F : ( 0 ..^ 2 ) --> dom I ) ) |
32 |
31
|
3anbi1d |
|- ( G e. UPGraph -> ( ( ( F : ( 0 ..^ 2 ) --> dom I /\ ( # ` F ) = 2 ) /\ P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) <-> ( F : ( 0 ..^ 2 ) --> dom I /\ P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) ) |
33 |
4 25 32
|
3bitrd |
|- ( G e. UPGraph -> ( ( F ( Walks ` G ) P /\ ( # ` F ) = 2 ) <-> ( F : ( 0 ..^ 2 ) --> dom I /\ P : ( 0 ... 2 ) --> V /\ ( ( I ` ( F ` 0 ) ) = { ( P ` 0 ) , ( P ` 1 ) } /\ ( I ` ( F ` 1 ) ) = { ( P ` 1 ) , ( P ` 2 ) } ) ) ) ) |