| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upgr4cycl4dv4e.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | upgr4cycl4dv4e.e |  |-  E = ( Edg ` G ) | 
						
							| 3 |  | cyclprop |  |-  ( F ( Cycles ` G ) P -> ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) | 
						
							| 4 |  | pthiswlk |  |-  ( F ( Paths ` G ) P -> F ( Walks ` G ) P ) | 
						
							| 5 | 2 | upgrwlkvtxedg |  |-  ( ( G e. UPGraph /\ F ( Walks ` G ) P ) -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) | 
						
							| 6 |  | fveq2 |  |-  ( ( # ` F ) = 4 -> ( P ` ( # ` F ) ) = ( P ` 4 ) ) | 
						
							| 7 | 6 | eqeq2d |  |-  ( ( # ` F ) = 4 -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) <-> ( P ` 0 ) = ( P ` 4 ) ) ) | 
						
							| 8 | 7 | anbi2d |  |-  ( ( # ` F ) = 4 -> ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) <-> ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` 4 ) ) ) ) | 
						
							| 9 |  | oveq2 |  |-  ( ( # ` F ) = 4 -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) | 
						
							| 10 |  | fzo0to42pr |  |-  ( 0 ..^ 4 ) = ( { 0 , 1 } u. { 2 , 3 } ) | 
						
							| 11 | 9 10 | eqtrdi |  |-  ( ( # ` F ) = 4 -> ( 0 ..^ ( # ` F ) ) = ( { 0 , 1 } u. { 2 , 3 } ) ) | 
						
							| 12 | 11 | raleqdv |  |-  ( ( # ` F ) = 4 -> ( A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E <-> A. k e. ( { 0 , 1 } u. { 2 , 3 } ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) ) | 
						
							| 13 |  | ralunb |  |-  ( A. k e. ( { 0 , 1 } u. { 2 , 3 } ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E <-> ( A. k e. { 0 , 1 } { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E /\ A. k e. { 2 , 3 } { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) ) | 
						
							| 14 |  | c0ex |  |-  0 e. _V | 
						
							| 15 |  | 1ex |  |-  1 e. _V | 
						
							| 16 |  | fveq2 |  |-  ( k = 0 -> ( P ` k ) = ( P ` 0 ) ) | 
						
							| 17 |  | fv0p1e1 |  |-  ( k = 0 -> ( P ` ( k + 1 ) ) = ( P ` 1 ) ) | 
						
							| 18 | 16 17 | preq12d |  |-  ( k = 0 -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = { ( P ` 0 ) , ( P ` 1 ) } ) | 
						
							| 19 | 18 | eleq1d |  |-  ( k = 0 -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E <-> { ( P ` 0 ) , ( P ` 1 ) } e. E ) ) | 
						
							| 20 |  | fveq2 |  |-  ( k = 1 -> ( P ` k ) = ( P ` 1 ) ) | 
						
							| 21 |  | oveq1 |  |-  ( k = 1 -> ( k + 1 ) = ( 1 + 1 ) ) | 
						
							| 22 |  | 1p1e2 |  |-  ( 1 + 1 ) = 2 | 
						
							| 23 | 21 22 | eqtrdi |  |-  ( k = 1 -> ( k + 1 ) = 2 ) | 
						
							| 24 | 23 | fveq2d |  |-  ( k = 1 -> ( P ` ( k + 1 ) ) = ( P ` 2 ) ) | 
						
							| 25 | 20 24 | preq12d |  |-  ( k = 1 -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = { ( P ` 1 ) , ( P ` 2 ) } ) | 
						
							| 26 | 25 | eleq1d |  |-  ( k = 1 -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E <-> { ( P ` 1 ) , ( P ` 2 ) } e. E ) ) | 
						
							| 27 | 14 15 19 26 | ralpr |  |-  ( A. k e. { 0 , 1 } { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E <-> ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) ) | 
						
							| 28 |  | 2ex |  |-  2 e. _V | 
						
							| 29 |  | 3ex |  |-  3 e. _V | 
						
							| 30 |  | fveq2 |  |-  ( k = 2 -> ( P ` k ) = ( P ` 2 ) ) | 
						
							| 31 |  | oveq1 |  |-  ( k = 2 -> ( k + 1 ) = ( 2 + 1 ) ) | 
						
							| 32 |  | 2p1e3 |  |-  ( 2 + 1 ) = 3 | 
						
							| 33 | 31 32 | eqtrdi |  |-  ( k = 2 -> ( k + 1 ) = 3 ) | 
						
							| 34 | 33 | fveq2d |  |-  ( k = 2 -> ( P ` ( k + 1 ) ) = ( P ` 3 ) ) | 
						
							| 35 | 30 34 | preq12d |  |-  ( k = 2 -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = { ( P ` 2 ) , ( P ` 3 ) } ) | 
						
							| 36 | 35 | eleq1d |  |-  ( k = 2 -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E <-> { ( P ` 2 ) , ( P ` 3 ) } e. E ) ) | 
						
							| 37 |  | fveq2 |  |-  ( k = 3 -> ( P ` k ) = ( P ` 3 ) ) | 
						
							| 38 |  | oveq1 |  |-  ( k = 3 -> ( k + 1 ) = ( 3 + 1 ) ) | 
						
							| 39 |  | 3p1e4 |  |-  ( 3 + 1 ) = 4 | 
						
							| 40 | 38 39 | eqtrdi |  |-  ( k = 3 -> ( k + 1 ) = 4 ) | 
						
							| 41 | 40 | fveq2d |  |-  ( k = 3 -> ( P ` ( k + 1 ) ) = ( P ` 4 ) ) | 
						
							| 42 | 37 41 | preq12d |  |-  ( k = 3 -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = { ( P ` 3 ) , ( P ` 4 ) } ) | 
						
							| 43 | 42 | eleq1d |  |-  ( k = 3 -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E <-> { ( P ` 3 ) , ( P ` 4 ) } e. E ) ) | 
						
							| 44 | 28 29 36 43 | ralpr |  |-  ( A. k e. { 2 , 3 } { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E <-> ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 4 ) } e. E ) ) | 
						
							| 45 | 27 44 | anbi12i |  |-  ( ( A. k e. { 0 , 1 } { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E /\ A. k e. { 2 , 3 } { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) <-> ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 4 ) } e. E ) ) ) | 
						
							| 46 | 13 45 | bitri |  |-  ( A. k e. ( { 0 , 1 } u. { 2 , 3 } ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E <-> ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 4 ) } e. E ) ) ) | 
						
							| 47 | 12 46 | bitrdi |  |-  ( ( # ` F ) = 4 -> ( A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E <-> ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 4 ) } e. E ) ) ) ) | 
						
							| 48 | 8 47 | anbi12d |  |-  ( ( # ` F ) = 4 -> ( ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) /\ A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) <-> ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` 4 ) ) /\ ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 4 ) } e. E ) ) ) ) ) | 
						
							| 49 |  | preq2 |  |-  ( ( P ` 4 ) = ( P ` 0 ) -> { ( P ` 3 ) , ( P ` 4 ) } = { ( P ` 3 ) , ( P ` 0 ) } ) | 
						
							| 50 | 49 | eleq1d |  |-  ( ( P ` 4 ) = ( P ` 0 ) -> ( { ( P ` 3 ) , ( P ` 4 ) } e. E <-> { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) | 
						
							| 51 | 50 | eqcoms |  |-  ( ( P ` 0 ) = ( P ` 4 ) -> ( { ( P ` 3 ) , ( P ` 4 ) } e. E <-> { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) | 
						
							| 52 | 51 | anbi2d |  |-  ( ( P ` 0 ) = ( P ` 4 ) -> ( ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 4 ) } e. E ) <-> ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) ) | 
						
							| 53 | 52 | anbi2d |  |-  ( ( P ` 0 ) = ( P ` 4 ) -> ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 4 ) } e. E ) ) <-> ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) ) ) | 
						
							| 54 | 53 | adantl |  |-  ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( P ` 0 ) = ( P ` 4 ) ) -> ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 4 ) } e. E ) ) <-> ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) ) ) | 
						
							| 55 |  | 4nn0 |  |-  4 e. NN0 | 
						
							| 56 | 55 | a1i |  |-  ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) -> 4 e. NN0 ) | 
						
							| 57 | 1 | wlkp |  |-  ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> V ) | 
						
							| 58 |  | oveq2 |  |-  ( ( # ` F ) = 4 -> ( 0 ... ( # ` F ) ) = ( 0 ... 4 ) ) | 
						
							| 59 | 58 | feq2d |  |-  ( ( # ` F ) = 4 -> ( P : ( 0 ... ( # ` F ) ) --> V <-> P : ( 0 ... 4 ) --> V ) ) | 
						
							| 60 | 59 | biimpcd |  |-  ( P : ( 0 ... ( # ` F ) ) --> V -> ( ( # ` F ) = 4 -> P : ( 0 ... 4 ) --> V ) ) | 
						
							| 61 | 4 57 60 | 3syl |  |-  ( F ( Paths ` G ) P -> ( ( # ` F ) = 4 -> P : ( 0 ... 4 ) --> V ) ) | 
						
							| 62 | 61 | impcom |  |-  ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) -> P : ( 0 ... 4 ) --> V ) | 
						
							| 63 |  | id |  |-  ( 4 e. NN0 -> 4 e. NN0 ) | 
						
							| 64 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 65 | 64 | a1i |  |-  ( 4 e. NN0 -> 0 e. NN0 ) | 
						
							| 66 |  | 4pos |  |-  0 < 4 | 
						
							| 67 | 66 | a1i |  |-  ( 4 e. NN0 -> 0 < 4 ) | 
						
							| 68 | 63 65 67 | 3jca |  |-  ( 4 e. NN0 -> ( 4 e. NN0 /\ 0 e. NN0 /\ 0 < 4 ) ) | 
						
							| 69 |  | fvffz0 |  |-  ( ( ( 4 e. NN0 /\ 0 e. NN0 /\ 0 < 4 ) /\ P : ( 0 ... 4 ) --> V ) -> ( P ` 0 ) e. V ) | 
						
							| 70 | 68 69 | sylan |  |-  ( ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) -> ( P ` 0 ) e. V ) | 
						
							| 71 | 70 | ad2antlr |  |-  ( ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) ) /\ ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) ) -> ( P ` 0 ) e. V ) | 
						
							| 72 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 73 | 72 | a1i |  |-  ( 4 e. NN0 -> 1 e. NN0 ) | 
						
							| 74 |  | 1lt4 |  |-  1 < 4 | 
						
							| 75 | 74 | a1i |  |-  ( 4 e. NN0 -> 1 < 4 ) | 
						
							| 76 | 63 73 75 | 3jca |  |-  ( 4 e. NN0 -> ( 4 e. NN0 /\ 1 e. NN0 /\ 1 < 4 ) ) | 
						
							| 77 |  | fvffz0 |  |-  ( ( ( 4 e. NN0 /\ 1 e. NN0 /\ 1 < 4 ) /\ P : ( 0 ... 4 ) --> V ) -> ( P ` 1 ) e. V ) | 
						
							| 78 | 76 77 | sylan |  |-  ( ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) -> ( P ` 1 ) e. V ) | 
						
							| 79 | 78 | ad2antlr |  |-  ( ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) ) /\ ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) ) -> ( P ` 1 ) e. V ) | 
						
							| 80 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 81 | 80 | a1i |  |-  ( 4 e. NN0 -> 2 e. NN0 ) | 
						
							| 82 |  | 2lt4 |  |-  2 < 4 | 
						
							| 83 | 82 | a1i |  |-  ( 4 e. NN0 -> 2 < 4 ) | 
						
							| 84 | 63 81 83 | 3jca |  |-  ( 4 e. NN0 -> ( 4 e. NN0 /\ 2 e. NN0 /\ 2 < 4 ) ) | 
						
							| 85 |  | fvffz0 |  |-  ( ( ( 4 e. NN0 /\ 2 e. NN0 /\ 2 < 4 ) /\ P : ( 0 ... 4 ) --> V ) -> ( P ` 2 ) e. V ) | 
						
							| 86 | 84 85 | sylan |  |-  ( ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) -> ( P ` 2 ) e. V ) | 
						
							| 87 | 86 | ad2antlr |  |-  ( ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) ) /\ ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) ) -> ( P ` 2 ) e. V ) | 
						
							| 88 |  | 3nn0 |  |-  3 e. NN0 | 
						
							| 89 | 88 | a1i |  |-  ( 4 e. NN0 -> 3 e. NN0 ) | 
						
							| 90 |  | 3lt4 |  |-  3 < 4 | 
						
							| 91 | 90 | a1i |  |-  ( 4 e. NN0 -> 3 < 4 ) | 
						
							| 92 | 63 89 91 | 3jca |  |-  ( 4 e. NN0 -> ( 4 e. NN0 /\ 3 e. NN0 /\ 3 < 4 ) ) | 
						
							| 93 |  | fvffz0 |  |-  ( ( ( 4 e. NN0 /\ 3 e. NN0 /\ 3 < 4 ) /\ P : ( 0 ... 4 ) --> V ) -> ( P ` 3 ) e. V ) | 
						
							| 94 | 92 93 | sylan |  |-  ( ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) -> ( P ` 3 ) e. V ) | 
						
							| 95 | 94 | ad2antlr |  |-  ( ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) ) /\ ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) ) -> ( P ` 3 ) e. V ) | 
						
							| 96 |  | simpr |  |-  ( ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) ) /\ ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) ) -> ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) ) | 
						
							| 97 |  | simplr |  |-  ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) ) -> F ( Paths ` G ) P ) | 
						
							| 98 |  | breq2 |  |-  ( ( # ` F ) = 4 -> ( 1 < ( # ` F ) <-> 1 < 4 ) ) | 
						
							| 99 | 74 98 | mpbiri |  |-  ( ( # ` F ) = 4 -> 1 < ( # ` F ) ) | 
						
							| 100 | 99 | ad2antrr |  |-  ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) ) -> 1 < ( # ` F ) ) | 
						
							| 101 |  | simpll |  |-  ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) ) -> ( # ` F ) = 4 ) | 
						
							| 102 | 9 | ad2antrr |  |-  ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) ) -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) | 
						
							| 103 |  | 4nn |  |-  4 e. NN | 
						
							| 104 |  | lbfzo0 |  |-  ( 0 e. ( 0 ..^ 4 ) <-> 4 e. NN ) | 
						
							| 105 | 103 104 | mpbir |  |-  0 e. ( 0 ..^ 4 ) | 
						
							| 106 |  | eleq2 |  |-  ( ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) -> ( 0 e. ( 0 ..^ ( # ` F ) ) <-> 0 e. ( 0 ..^ 4 ) ) ) | 
						
							| 107 | 105 106 | mpbiri |  |-  ( ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) -> 0 e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 108 | 107 | adantl |  |-  ( ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) -> 0 e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 109 |  | pthdadjvtx |  |-  ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ 0 e. ( 0 ..^ ( # ` F ) ) ) -> ( P ` 0 ) =/= ( P ` ( 0 + 1 ) ) ) | 
						
							| 110 | 108 109 | syl3an3 |  |-  ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( P ` 0 ) =/= ( P ` ( 0 + 1 ) ) ) | 
						
							| 111 |  | 1e0p1 |  |-  1 = ( 0 + 1 ) | 
						
							| 112 | 111 | fveq2i |  |-  ( P ` 1 ) = ( P ` ( 0 + 1 ) ) | 
						
							| 113 | 112 | neeq2i |  |-  ( ( P ` 0 ) =/= ( P ` 1 ) <-> ( P ` 0 ) =/= ( P ` ( 0 + 1 ) ) ) | 
						
							| 114 | 110 113 | sylibr |  |-  ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( P ` 0 ) =/= ( P ` 1 ) ) | 
						
							| 115 |  | simp1 |  |-  ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> F ( Paths ` G ) P ) | 
						
							| 116 |  | elfzo0 |  |-  ( 2 e. ( 0 ..^ 4 ) <-> ( 2 e. NN0 /\ 4 e. NN /\ 2 < 4 ) ) | 
						
							| 117 | 80 103 82 116 | mpbir3an |  |-  2 e. ( 0 ..^ 4 ) | 
						
							| 118 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 119 |  | fzo1fzo0n0 |  |-  ( 2 e. ( 1 ..^ 4 ) <-> ( 2 e. ( 0 ..^ 4 ) /\ 2 =/= 0 ) ) | 
						
							| 120 | 117 118 119 | mpbir2an |  |-  2 e. ( 1 ..^ 4 ) | 
						
							| 121 |  | oveq2 |  |-  ( ( # ` F ) = 4 -> ( 1 ..^ ( # ` F ) ) = ( 1 ..^ 4 ) ) | 
						
							| 122 | 120 121 | eleqtrrid |  |-  ( ( # ` F ) = 4 -> 2 e. ( 1 ..^ ( # ` F ) ) ) | 
						
							| 123 |  | 0elfz |  |-  ( 4 e. NN0 -> 0 e. ( 0 ... 4 ) ) | 
						
							| 124 | 55 123 | ax-mp |  |-  0 e. ( 0 ... 4 ) | 
						
							| 125 | 124 58 | eleqtrrid |  |-  ( ( # ` F ) = 4 -> 0 e. ( 0 ... ( # ` F ) ) ) | 
						
							| 126 | 118 | a1i |  |-  ( ( # ` F ) = 4 -> 2 =/= 0 ) | 
						
							| 127 | 122 125 126 | 3jca |  |-  ( ( # ` F ) = 4 -> ( 2 e. ( 1 ..^ ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ 2 =/= 0 ) ) | 
						
							| 128 | 127 | adantr |  |-  ( ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) -> ( 2 e. ( 1 ..^ ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ 2 =/= 0 ) ) | 
						
							| 129 | 128 | 3ad2ant3 |  |-  ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( 2 e. ( 1 ..^ ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ 2 =/= 0 ) ) | 
						
							| 130 |  | pthdivtx |  |-  ( ( F ( Paths ` G ) P /\ ( 2 e. ( 1 ..^ ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ 2 =/= 0 ) ) -> ( P ` 2 ) =/= ( P ` 0 ) ) | 
						
							| 131 | 115 129 130 | syl2anc |  |-  ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( P ` 2 ) =/= ( P ` 0 ) ) | 
						
							| 132 | 131 | necomd |  |-  ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( P ` 0 ) =/= ( P ` 2 ) ) | 
						
							| 133 |  | elfzo0 |  |-  ( 3 e. ( 0 ..^ 4 ) <-> ( 3 e. NN0 /\ 4 e. NN /\ 3 < 4 ) ) | 
						
							| 134 | 88 103 90 133 | mpbir3an |  |-  3 e. ( 0 ..^ 4 ) | 
						
							| 135 |  | 3ne0 |  |-  3 =/= 0 | 
						
							| 136 |  | fzo1fzo0n0 |  |-  ( 3 e. ( 1 ..^ 4 ) <-> ( 3 e. ( 0 ..^ 4 ) /\ 3 =/= 0 ) ) | 
						
							| 137 | 134 135 136 | mpbir2an |  |-  3 e. ( 1 ..^ 4 ) | 
						
							| 138 | 137 121 | eleqtrrid |  |-  ( ( # ` F ) = 4 -> 3 e. ( 1 ..^ ( # ` F ) ) ) | 
						
							| 139 | 135 | a1i |  |-  ( ( # ` F ) = 4 -> 3 =/= 0 ) | 
						
							| 140 | 138 125 139 | 3jca |  |-  ( ( # ` F ) = 4 -> ( 3 e. ( 1 ..^ ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ 3 =/= 0 ) ) | 
						
							| 141 | 140 | adantr |  |-  ( ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) -> ( 3 e. ( 1 ..^ ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ 3 =/= 0 ) ) | 
						
							| 142 | 141 | 3ad2ant3 |  |-  ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( 3 e. ( 1 ..^ ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ 3 =/= 0 ) ) | 
						
							| 143 |  | pthdivtx |  |-  ( ( F ( Paths ` G ) P /\ ( 3 e. ( 1 ..^ ( # ` F ) ) /\ 0 e. ( 0 ... ( # ` F ) ) /\ 3 =/= 0 ) ) -> ( P ` 3 ) =/= ( P ` 0 ) ) | 
						
							| 144 | 115 142 143 | syl2anc |  |-  ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( P ` 3 ) =/= ( P ` 0 ) ) | 
						
							| 145 | 144 | necomd |  |-  ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( P ` 0 ) =/= ( P ` 3 ) ) | 
						
							| 146 | 114 132 145 | 3jca |  |-  ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 0 ) =/= ( P ` 3 ) ) ) | 
						
							| 147 |  | elfzo0 |  |-  ( 1 e. ( 0 ..^ 4 ) <-> ( 1 e. NN0 /\ 4 e. NN /\ 1 < 4 ) ) | 
						
							| 148 | 72 103 74 147 | mpbir3an |  |-  1 e. ( 0 ..^ 4 ) | 
						
							| 149 |  | eleq2 |  |-  ( ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) -> ( 1 e. ( 0 ..^ ( # ` F ) ) <-> 1 e. ( 0 ..^ 4 ) ) ) | 
						
							| 150 | 148 149 | mpbiri |  |-  ( ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) -> 1 e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 151 | 150 | adantl |  |-  ( ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) -> 1 e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 152 |  | pthdadjvtx |  |-  ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ 1 e. ( 0 ..^ ( # ` F ) ) ) -> ( P ` 1 ) =/= ( P ` ( 1 + 1 ) ) ) | 
						
							| 153 | 151 152 | syl3an3 |  |-  ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( P ` 1 ) =/= ( P ` ( 1 + 1 ) ) ) | 
						
							| 154 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 155 | 154 | fveq2i |  |-  ( P ` 2 ) = ( P ` ( 1 + 1 ) ) | 
						
							| 156 | 155 | neeq2i |  |-  ( ( P ` 1 ) =/= ( P ` 2 ) <-> ( P ` 1 ) =/= ( P ` ( 1 + 1 ) ) ) | 
						
							| 157 | 153 156 | sylibr |  |-  ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( P ` 1 ) =/= ( P ` 2 ) ) | 
						
							| 158 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 159 |  | fzo1fzo0n0 |  |-  ( 1 e. ( 1 ..^ 4 ) <-> ( 1 e. ( 0 ..^ 4 ) /\ 1 =/= 0 ) ) | 
						
							| 160 | 148 158 159 | mpbir2an |  |-  1 e. ( 1 ..^ 4 ) | 
						
							| 161 | 160 121 | eleqtrrid |  |-  ( ( # ` F ) = 4 -> 1 e. ( 1 ..^ ( # ` F ) ) ) | 
						
							| 162 |  | 3re |  |-  3 e. RR | 
						
							| 163 |  | 4re |  |-  4 e. RR | 
						
							| 164 | 162 163 90 | ltleii |  |-  3 <_ 4 | 
						
							| 165 |  | elfz2nn0 |  |-  ( 3 e. ( 0 ... 4 ) <-> ( 3 e. NN0 /\ 4 e. NN0 /\ 3 <_ 4 ) ) | 
						
							| 166 | 88 55 164 165 | mpbir3an |  |-  3 e. ( 0 ... 4 ) | 
						
							| 167 | 166 58 | eleqtrrid |  |-  ( ( # ` F ) = 4 -> 3 e. ( 0 ... ( # ` F ) ) ) | 
						
							| 168 |  | 1re |  |-  1 e. RR | 
						
							| 169 |  | 1lt3 |  |-  1 < 3 | 
						
							| 170 | 168 169 | ltneii |  |-  1 =/= 3 | 
						
							| 171 | 170 | a1i |  |-  ( ( # ` F ) = 4 -> 1 =/= 3 ) | 
						
							| 172 | 161 167 171 | 3jca |  |-  ( ( # ` F ) = 4 -> ( 1 e. ( 1 ..^ ( # ` F ) ) /\ 3 e. ( 0 ... ( # ` F ) ) /\ 1 =/= 3 ) ) | 
						
							| 173 | 172 | adantr |  |-  ( ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) -> ( 1 e. ( 1 ..^ ( # ` F ) ) /\ 3 e. ( 0 ... ( # ` F ) ) /\ 1 =/= 3 ) ) | 
						
							| 174 | 173 | 3ad2ant3 |  |-  ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( 1 e. ( 1 ..^ ( # ` F ) ) /\ 3 e. ( 0 ... ( # ` F ) ) /\ 1 =/= 3 ) ) | 
						
							| 175 |  | pthdivtx |  |-  ( ( F ( Paths ` G ) P /\ ( 1 e. ( 1 ..^ ( # ` F ) ) /\ 3 e. ( 0 ... ( # ` F ) ) /\ 1 =/= 3 ) ) -> ( P ` 1 ) =/= ( P ` 3 ) ) | 
						
							| 176 | 115 174 175 | syl2anc |  |-  ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( P ` 1 ) =/= ( P ` 3 ) ) | 
						
							| 177 |  | eleq2 |  |-  ( ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) -> ( 2 e. ( 0 ..^ ( # ` F ) ) <-> 2 e. ( 0 ..^ 4 ) ) ) | 
						
							| 178 | 117 177 | mpbiri |  |-  ( ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) -> 2 e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 179 | 178 | adantl |  |-  ( ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) -> 2 e. ( 0 ..^ ( # ` F ) ) ) | 
						
							| 180 |  | pthdadjvtx |  |-  ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ 2 e. ( 0 ..^ ( # ` F ) ) ) -> ( P ` 2 ) =/= ( P ` ( 2 + 1 ) ) ) | 
						
							| 181 | 179 180 | syl3an3 |  |-  ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( P ` 2 ) =/= ( P ` ( 2 + 1 ) ) ) | 
						
							| 182 |  | df-3 |  |-  3 = ( 2 + 1 ) | 
						
							| 183 | 182 | fveq2i |  |-  ( P ` 3 ) = ( P ` ( 2 + 1 ) ) | 
						
							| 184 | 183 | neeq2i |  |-  ( ( P ` 2 ) =/= ( P ` 3 ) <-> ( P ` 2 ) =/= ( P ` ( 2 + 1 ) ) ) | 
						
							| 185 | 181 184 | sylibr |  |-  ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( P ` 2 ) =/= ( P ` 3 ) ) | 
						
							| 186 | 157 176 185 | 3jca |  |-  ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 3 ) /\ ( P ` 2 ) =/= ( P ` 3 ) ) ) | 
						
							| 187 | 146 186 | jca |  |-  ( ( F ( Paths ` G ) P /\ 1 < ( # ` F ) /\ ( ( # ` F ) = 4 /\ ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 4 ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 0 ) =/= ( P ` 3 ) ) /\ ( ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 3 ) /\ ( P ` 2 ) =/= ( P ` 3 ) ) ) ) | 
						
							| 188 | 97 100 101 102 187 | syl112anc |  |-  ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 0 ) =/= ( P ` 3 ) ) /\ ( ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 3 ) /\ ( P ` 2 ) =/= ( P ` 3 ) ) ) ) | 
						
							| 189 | 188 | adantr |  |-  ( ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) ) /\ ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 0 ) =/= ( P ` 3 ) ) /\ ( ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 3 ) /\ ( P ` 2 ) =/= ( P ` 3 ) ) ) ) | 
						
							| 190 |  | preq2 |  |-  ( c = ( P ` 2 ) -> { ( P ` 1 ) , c } = { ( P ` 1 ) , ( P ` 2 ) } ) | 
						
							| 191 | 190 | eleq1d |  |-  ( c = ( P ` 2 ) -> ( { ( P ` 1 ) , c } e. E <-> { ( P ` 1 ) , ( P ` 2 ) } e. E ) ) | 
						
							| 192 | 191 | anbi2d |  |-  ( c = ( P ` 2 ) -> ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) <-> ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) ) ) | 
						
							| 193 |  | preq1 |  |-  ( c = ( P ` 2 ) -> { c , d } = { ( P ` 2 ) , d } ) | 
						
							| 194 | 193 | eleq1d |  |-  ( c = ( P ` 2 ) -> ( { c , d } e. E <-> { ( P ` 2 ) , d } e. E ) ) | 
						
							| 195 | 194 | anbi1d |  |-  ( c = ( P ` 2 ) -> ( ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) <-> ( { ( P ` 2 ) , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) ) | 
						
							| 196 | 192 195 | anbi12d |  |-  ( c = ( P ` 2 ) -> ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) <-> ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) ) ) | 
						
							| 197 |  | neeq2 |  |-  ( c = ( P ` 2 ) -> ( ( P ` 0 ) =/= c <-> ( P ` 0 ) =/= ( P ` 2 ) ) ) | 
						
							| 198 | 197 | 3anbi2d |  |-  ( c = ( P ` 2 ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) <-> ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 0 ) =/= d ) ) ) | 
						
							| 199 |  | neeq2 |  |-  ( c = ( P ` 2 ) -> ( ( P ` 1 ) =/= c <-> ( P ` 1 ) =/= ( P ` 2 ) ) ) | 
						
							| 200 |  | neeq1 |  |-  ( c = ( P ` 2 ) -> ( c =/= d <-> ( P ` 2 ) =/= d ) ) | 
						
							| 201 | 199 200 | 3anbi13d |  |-  ( c = ( P ` 2 ) -> ( ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) <-> ( ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= d /\ ( P ` 2 ) =/= d ) ) ) | 
						
							| 202 | 198 201 | anbi12d |  |-  ( c = ( P ` 2 ) -> ( ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) <-> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= d /\ ( P ` 2 ) =/= d ) ) ) ) | 
						
							| 203 | 196 202 | anbi12d |  |-  ( c = ( P ` 2 ) -> ( ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) ) <-> ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= d /\ ( P ` 2 ) =/= d ) ) ) ) ) | 
						
							| 204 |  | preq2 |  |-  ( d = ( P ` 3 ) -> { ( P ` 2 ) , d } = { ( P ` 2 ) , ( P ` 3 ) } ) | 
						
							| 205 | 204 | eleq1d |  |-  ( d = ( P ` 3 ) -> ( { ( P ` 2 ) , d } e. E <-> { ( P ` 2 ) , ( P ` 3 ) } e. E ) ) | 
						
							| 206 |  | preq1 |  |-  ( d = ( P ` 3 ) -> { d , ( P ` 0 ) } = { ( P ` 3 ) , ( P ` 0 ) } ) | 
						
							| 207 | 206 | eleq1d |  |-  ( d = ( P ` 3 ) -> ( { d , ( P ` 0 ) } e. E <-> { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) | 
						
							| 208 | 205 207 | anbi12d |  |-  ( d = ( P ` 3 ) -> ( ( { ( P ` 2 ) , d } e. E /\ { d , ( P ` 0 ) } e. E ) <-> ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) ) | 
						
							| 209 | 208 | anbi2d |  |-  ( d = ( P ` 3 ) -> ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) <-> ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) ) ) | 
						
							| 210 |  | neeq2 |  |-  ( d = ( P ` 3 ) -> ( ( P ` 0 ) =/= d <-> ( P ` 0 ) =/= ( P ` 3 ) ) ) | 
						
							| 211 | 210 | 3anbi3d |  |-  ( d = ( P ` 3 ) -> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 0 ) =/= d ) <-> ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 0 ) =/= ( P ` 3 ) ) ) ) | 
						
							| 212 |  | neeq2 |  |-  ( d = ( P ` 3 ) -> ( ( P ` 1 ) =/= d <-> ( P ` 1 ) =/= ( P ` 3 ) ) ) | 
						
							| 213 |  | neeq2 |  |-  ( d = ( P ` 3 ) -> ( ( P ` 2 ) =/= d <-> ( P ` 2 ) =/= ( P ` 3 ) ) ) | 
						
							| 214 | 212 213 | 3anbi23d |  |-  ( d = ( P ` 3 ) -> ( ( ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= d /\ ( P ` 2 ) =/= d ) <-> ( ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 3 ) /\ ( P ` 2 ) =/= ( P ` 3 ) ) ) ) | 
						
							| 215 | 211 214 | anbi12d |  |-  ( d = ( P ` 3 ) -> ( ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= d /\ ( P ` 2 ) =/= d ) ) <-> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 0 ) =/= ( P ` 3 ) ) /\ ( ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 3 ) /\ ( P ` 2 ) =/= ( P ` 3 ) ) ) ) ) | 
						
							| 216 | 209 215 | anbi12d |  |-  ( d = ( P ` 3 ) -> ( ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= d /\ ( P ` 2 ) =/= d ) ) ) <-> ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 0 ) =/= ( P ` 3 ) ) /\ ( ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 3 ) /\ ( P ` 2 ) =/= ( P ` 3 ) ) ) ) ) ) | 
						
							| 217 | 203 216 | rspc2ev |  |-  ( ( ( P ` 2 ) e. V /\ ( P ` 3 ) e. V /\ ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= ( P ` 2 ) /\ ( P ` 0 ) =/= ( P ` 3 ) ) /\ ( ( P ` 1 ) =/= ( P ` 2 ) /\ ( P ` 1 ) =/= ( P ` 3 ) /\ ( P ` 2 ) =/= ( P ` 3 ) ) ) ) ) -> E. c e. V E. d e. V ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) ) ) | 
						
							| 218 | 87 95 96 189 217 | syl112anc |  |-  ( ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) ) /\ ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) ) -> E. c e. V E. d e. V ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) ) ) | 
						
							| 219 | 71 79 218 | 3jca |  |-  ( ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) ) /\ ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) ) -> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ E. c e. V E. d e. V ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) ) ) ) | 
						
							| 220 | 219 | exp31 |  |-  ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) -> ( ( 4 e. NN0 /\ P : ( 0 ... 4 ) --> V ) -> ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) -> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ E. c e. V E. d e. V ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) ) ) ) ) ) | 
						
							| 221 | 56 62 220 | mp2and |  |-  ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) -> ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) -> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ E. c e. V E. d e. V ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) ) ) ) ) | 
						
							| 222 | 221 | adantr |  |-  ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( P ` 0 ) = ( P ` 4 ) ) -> ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 0 ) } e. E ) ) -> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ E. c e. V E. d e. V ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) ) ) ) ) | 
						
							| 223 | 54 222 | sylbid |  |-  ( ( ( ( # ` F ) = 4 /\ F ( Paths ` G ) P ) /\ ( P ` 0 ) = ( P ` 4 ) ) -> ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 4 ) } e. E ) ) -> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ E. c e. V E. d e. V ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) ) ) ) ) | 
						
							| 224 | 223 | exp31 |  |-  ( ( # ` F ) = 4 -> ( F ( Paths ` G ) P -> ( ( P ` 0 ) = ( P ` 4 ) -> ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 4 ) } e. E ) ) -> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ E. c e. V E. d e. V ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) ) ) ) ) ) ) | 
						
							| 225 | 224 | imp4c |  |-  ( ( # ` F ) = 4 -> ( ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` 4 ) ) /\ ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 4 ) } e. E ) ) ) -> ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ E. c e. V E. d e. V ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) ) ) ) ) | 
						
							| 226 |  | preq1 |  |-  ( a = ( P ` 0 ) -> { a , b } = { ( P ` 0 ) , b } ) | 
						
							| 227 | 226 | eleq1d |  |-  ( a = ( P ` 0 ) -> ( { a , b } e. E <-> { ( P ` 0 ) , b } e. E ) ) | 
						
							| 228 | 227 | anbi1d |  |-  ( a = ( P ` 0 ) -> ( ( { a , b } e. E /\ { b , c } e. E ) <-> ( { ( P ` 0 ) , b } e. E /\ { b , c } e. E ) ) ) | 
						
							| 229 |  | preq2 |  |-  ( a = ( P ` 0 ) -> { d , a } = { d , ( P ` 0 ) } ) | 
						
							| 230 | 229 | eleq1d |  |-  ( a = ( P ` 0 ) -> ( { d , a } e. E <-> { d , ( P ` 0 ) } e. E ) ) | 
						
							| 231 | 230 | anbi2d |  |-  ( a = ( P ` 0 ) -> ( ( { c , d } e. E /\ { d , a } e. E ) <-> ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) ) | 
						
							| 232 | 228 231 | anbi12d |  |-  ( a = ( P ` 0 ) -> ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) <-> ( ( { ( P ` 0 ) , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) ) ) | 
						
							| 233 |  | neeq1 |  |-  ( a = ( P ` 0 ) -> ( a =/= b <-> ( P ` 0 ) =/= b ) ) | 
						
							| 234 |  | neeq1 |  |-  ( a = ( P ` 0 ) -> ( a =/= c <-> ( P ` 0 ) =/= c ) ) | 
						
							| 235 |  | neeq1 |  |-  ( a = ( P ` 0 ) -> ( a =/= d <-> ( P ` 0 ) =/= d ) ) | 
						
							| 236 | 233 234 235 | 3anbi123d |  |-  ( a = ( P ` 0 ) -> ( ( a =/= b /\ a =/= c /\ a =/= d ) <-> ( ( P ` 0 ) =/= b /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) ) ) | 
						
							| 237 | 236 | anbi1d |  |-  ( a = ( P ` 0 ) -> ( ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) <-> ( ( ( P ` 0 ) =/= b /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) | 
						
							| 238 | 232 237 | anbi12d |  |-  ( a = ( P ` 0 ) -> ( ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) /\ ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) <-> ( ( ( { ( P ` 0 ) , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= b /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) ) | 
						
							| 239 | 238 | 2rexbidv |  |-  ( a = ( P ` 0 ) -> ( E. c e. V E. d e. V ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) /\ ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) <-> E. c e. V E. d e. V ( ( ( { ( P ` 0 ) , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= b /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) ) | 
						
							| 240 |  | preq2 |  |-  ( b = ( P ` 1 ) -> { ( P ` 0 ) , b } = { ( P ` 0 ) , ( P ` 1 ) } ) | 
						
							| 241 | 240 | eleq1d |  |-  ( b = ( P ` 1 ) -> ( { ( P ` 0 ) , b } e. E <-> { ( P ` 0 ) , ( P ` 1 ) } e. E ) ) | 
						
							| 242 |  | preq1 |  |-  ( b = ( P ` 1 ) -> { b , c } = { ( P ` 1 ) , c } ) | 
						
							| 243 | 242 | eleq1d |  |-  ( b = ( P ` 1 ) -> ( { b , c } e. E <-> { ( P ` 1 ) , c } e. E ) ) | 
						
							| 244 | 241 243 | anbi12d |  |-  ( b = ( P ` 1 ) -> ( ( { ( P ` 0 ) , b } e. E /\ { b , c } e. E ) <-> ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) ) ) | 
						
							| 245 | 244 | anbi1d |  |-  ( b = ( P ` 1 ) -> ( ( ( { ( P ` 0 ) , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) <-> ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) ) ) | 
						
							| 246 |  | neeq2 |  |-  ( b = ( P ` 1 ) -> ( ( P ` 0 ) =/= b <-> ( P ` 0 ) =/= ( P ` 1 ) ) ) | 
						
							| 247 | 246 | 3anbi1d |  |-  ( b = ( P ` 1 ) -> ( ( ( P ` 0 ) =/= b /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) <-> ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) ) ) | 
						
							| 248 |  | neeq1 |  |-  ( b = ( P ` 1 ) -> ( b =/= c <-> ( P ` 1 ) =/= c ) ) | 
						
							| 249 |  | neeq1 |  |-  ( b = ( P ` 1 ) -> ( b =/= d <-> ( P ` 1 ) =/= d ) ) | 
						
							| 250 | 248 249 | 3anbi12d |  |-  ( b = ( P ` 1 ) -> ( ( b =/= c /\ b =/= d /\ c =/= d ) <-> ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) ) | 
						
							| 251 | 247 250 | anbi12d |  |-  ( b = ( P ` 1 ) -> ( ( ( ( P ` 0 ) =/= b /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) <-> ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) ) ) | 
						
							| 252 | 245 251 | anbi12d |  |-  ( b = ( P ` 1 ) -> ( ( ( ( { ( P ` 0 ) , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= b /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) <-> ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) ) ) ) | 
						
							| 253 | 252 | 2rexbidv |  |-  ( b = ( P ` 1 ) -> ( E. c e. V E. d e. V ( ( ( { ( P ` 0 ) , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= b /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) <-> E. c e. V E. d e. V ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) ) ) ) | 
						
							| 254 | 239 253 | rspc2ev |  |-  ( ( ( P ` 0 ) e. V /\ ( P ` 1 ) e. V /\ E. c e. V E. d e. V ( ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , c } e. E ) /\ ( { c , d } e. E /\ { d , ( P ` 0 ) } e. E ) ) /\ ( ( ( P ` 0 ) =/= ( P ` 1 ) /\ ( P ` 0 ) =/= c /\ ( P ` 0 ) =/= d ) /\ ( ( P ` 1 ) =/= c /\ ( P ` 1 ) =/= d /\ c =/= d ) ) ) ) -> E. a e. V E. b e. V E. c e. V E. d e. V ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) /\ ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) | 
						
							| 255 | 225 254 | syl6 |  |-  ( ( # ` F ) = 4 -> ( ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` 4 ) ) /\ ( ( { ( P ` 0 ) , ( P ` 1 ) } e. E /\ { ( P ` 1 ) , ( P ` 2 ) } e. E ) /\ ( { ( P ` 2 ) , ( P ` 3 ) } e. E /\ { ( P ` 3 ) , ( P ` 4 ) } e. E ) ) ) -> E. a e. V E. b e. V E. c e. V E. d e. V ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) /\ ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) ) | 
						
							| 256 | 48 255 | sylbid |  |-  ( ( # ` F ) = 4 -> ( ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) /\ A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) -> E. a e. V E. b e. V E. c e. V E. d e. V ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) /\ ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) ) | 
						
							| 257 | 256 | expd |  |-  ( ( # ` F ) = 4 -> ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E -> E. a e. V E. b e. V E. c e. V E. d e. V ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) /\ ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) ) ) | 
						
							| 258 | 257 | com13 |  |-  ( A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E -> ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( # ` F ) = 4 -> E. a e. V E. b e. V E. c e. V E. d e. V ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) /\ ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) ) ) | 
						
							| 259 | 5 258 | syl |  |-  ( ( G e. UPGraph /\ F ( Walks ` G ) P ) -> ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( # ` F ) = 4 -> E. a e. V E. b e. V E. c e. V E. d e. V ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) /\ ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) ) ) | 
						
							| 260 | 259 | expcom |  |-  ( F ( Walks ` G ) P -> ( G e. UPGraph -> ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( # ` F ) = 4 -> E. a e. V E. b e. V E. c e. V E. d e. V ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) /\ ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) ) ) ) | 
						
							| 261 | 260 | com23 |  |-  ( F ( Walks ` G ) P -> ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( G e. UPGraph -> ( ( # ` F ) = 4 -> E. a e. V E. b e. V E. c e. V E. d e. V ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) /\ ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) ) ) ) | 
						
							| 262 | 261 | expd |  |-  ( F ( Walks ` G ) P -> ( F ( Paths ` G ) P -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( G e. UPGraph -> ( ( # ` F ) = 4 -> E. a e. V E. b e. V E. c e. V E. d e. V ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) /\ ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) ) ) ) ) | 
						
							| 263 | 4 262 | mpcom |  |-  ( F ( Paths ` G ) P -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( G e. UPGraph -> ( ( # ` F ) = 4 -> E. a e. V E. b e. V E. c e. V E. d e. V ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) /\ ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) ) ) ) | 
						
							| 264 | 263 | imp |  |-  ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( G e. UPGraph -> ( ( # ` F ) = 4 -> E. a e. V E. b e. V E. c e. V E. d e. V ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) /\ ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) ) ) | 
						
							| 265 | 3 264 | syl |  |-  ( F ( Cycles ` G ) P -> ( G e. UPGraph -> ( ( # ` F ) = 4 -> E. a e. V E. b e. V E. c e. V E. d e. V ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) /\ ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) ) ) | 
						
							| 266 | 265 | 3imp21 |  |-  ( ( G e. UPGraph /\ F ( Cycles ` G ) P /\ ( # ` F ) = 4 ) -> E. a e. V E. b e. V E. c e. V E. d e. V ( ( ( { a , b } e. E /\ { b , c } e. E ) /\ ( { c , d } e. E /\ { d , a } e. E ) ) /\ ( ( a =/= b /\ a =/= c /\ a =/= d ) /\ ( b =/= c /\ b =/= d /\ c =/= d ) ) ) ) |