| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upgredg.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | upgredg.e |  |-  E = ( Edg ` G ) | 
						
							| 3 |  | edgval |  |-  ( Edg ` G ) = ran ( iEdg ` G ) | 
						
							| 4 | 3 | a1i |  |-  ( G e. UPGraph -> ( Edg ` G ) = ran ( iEdg ` G ) ) | 
						
							| 5 | 2 4 | eqtrid |  |-  ( G e. UPGraph -> E = ran ( iEdg ` G ) ) | 
						
							| 6 | 5 | eleq2d |  |-  ( G e. UPGraph -> ( C e. E <-> C e. ran ( iEdg ` G ) ) ) | 
						
							| 7 |  | eqid |  |-  ( iEdg ` G ) = ( iEdg ` G ) | 
						
							| 8 | 1 7 | upgrf |  |-  ( G e. UPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 9 | 8 | frnd |  |-  ( G e. UPGraph -> ran ( iEdg ` G ) C_ { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 10 | 9 | sseld |  |-  ( G e. UPGraph -> ( C e. ran ( iEdg ` G ) -> C e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) ) | 
						
							| 11 | 6 10 | sylbid |  |-  ( G e. UPGraph -> ( C e. E -> C e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) ) | 
						
							| 12 | 11 | imp |  |-  ( ( G e. UPGraph /\ C e. E ) -> C e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 13 |  | fveq2 |  |-  ( x = C -> ( # ` x ) = ( # ` C ) ) | 
						
							| 14 | 13 | breq1d |  |-  ( x = C -> ( ( # ` x ) <_ 2 <-> ( # ` C ) <_ 2 ) ) | 
						
							| 15 | 14 | elrab |  |-  ( C e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } <-> ( C e. ( ~P V \ { (/) } ) /\ ( # ` C ) <_ 2 ) ) | 
						
							| 16 |  | hashle2prv |  |-  ( C e. ( ~P V \ { (/) } ) -> ( ( # ` C ) <_ 2 <-> E. a e. V E. b e. V C = { a , b } ) ) | 
						
							| 17 | 16 | biimpa |  |-  ( ( C e. ( ~P V \ { (/) } ) /\ ( # ` C ) <_ 2 ) -> E. a e. V E. b e. V C = { a , b } ) | 
						
							| 18 | 15 17 | sylbi |  |-  ( C e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> E. a e. V E. b e. V C = { a , b } ) | 
						
							| 19 | 12 18 | syl |  |-  ( ( G e. UPGraph /\ C e. E ) -> E. a e. V E. b e. V C = { a , b } ) |