Step |
Hyp |
Ref |
Expression |
1 |
|
upgredg.v |
|- V = ( Vtx ` G ) |
2 |
|
upgredg.e |
|- E = ( Edg ` G ) |
3 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
4 |
3
|
a1i |
|- ( G e. UPGraph -> ( Edg ` G ) = ran ( iEdg ` G ) ) |
5 |
2 4
|
eqtrid |
|- ( G e. UPGraph -> E = ran ( iEdg ` G ) ) |
6 |
5
|
eleq2d |
|- ( G e. UPGraph -> ( C e. E <-> C e. ran ( iEdg ` G ) ) ) |
7 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
8 |
1 7
|
upgrf |
|- ( G e. UPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
9 |
8
|
frnd |
|- ( G e. UPGraph -> ran ( iEdg ` G ) C_ { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
10 |
9
|
sseld |
|- ( G e. UPGraph -> ( C e. ran ( iEdg ` G ) -> C e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
11 |
6 10
|
sylbid |
|- ( G e. UPGraph -> ( C e. E -> C e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
12 |
11
|
imp |
|- ( ( G e. UPGraph /\ C e. E ) -> C e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
13 |
|
fveq2 |
|- ( x = C -> ( # ` x ) = ( # ` C ) ) |
14 |
13
|
breq1d |
|- ( x = C -> ( ( # ` x ) <_ 2 <-> ( # ` C ) <_ 2 ) ) |
15 |
14
|
elrab |
|- ( C e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } <-> ( C e. ( ~P V \ { (/) } ) /\ ( # ` C ) <_ 2 ) ) |
16 |
|
hashle2prv |
|- ( C e. ( ~P V \ { (/) } ) -> ( ( # ` C ) <_ 2 <-> E. a e. V E. b e. V C = { a , b } ) ) |
17 |
16
|
biimpa |
|- ( ( C e. ( ~P V \ { (/) } ) /\ ( # ` C ) <_ 2 ) -> E. a e. V E. b e. V C = { a , b } ) |
18 |
15 17
|
sylbi |
|- ( C e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> E. a e. V E. b e. V C = { a , b } ) |
19 |
12 18
|
syl |
|- ( ( G e. UPGraph /\ C e. E ) -> E. a e. V E. b e. V C = { a , b } ) |