| Step | Hyp | Ref | Expression | 
						
							| 1 |  | edginwlk.i |  |-  I = ( iEdg ` G ) | 
						
							| 2 |  | edginwlk.e |  |-  E = ( Edg ` G ) | 
						
							| 3 |  | upgruhgr |  |-  ( G e. UPGraph -> G e. UHGraph ) | 
						
							| 4 | 1 | uhgrfun |  |-  ( G e. UHGraph -> Fun I ) | 
						
							| 5 | 3 4 | syl |  |-  ( G e. UPGraph -> Fun I ) | 
						
							| 6 | 1 2 | edginwlk |  |-  ( ( Fun I /\ F e. Word dom I /\ K e. ( 0 ..^ ( # ` F ) ) ) -> ( I ` ( F ` K ) ) e. E ) | 
						
							| 7 | 6 | 3expia |  |-  ( ( Fun I /\ F e. Word dom I ) -> ( K e. ( 0 ..^ ( # ` F ) ) -> ( I ` ( F ` K ) ) e. E ) ) | 
						
							| 8 | 5 7 | sylan |  |-  ( ( G e. UPGraph /\ F e. Word dom I ) -> ( K e. ( 0 ..^ ( # ` F ) ) -> ( I ` ( F ` K ) ) e. E ) ) |