Metamath Proof Explorer


Theorem upgredgss

Description: The set of edges of a pseudograph is a subset of the set of unordered pairs of vertices. (Contributed by AV, 29-Nov-2020)

Ref Expression
Assertion upgredgss
|- ( G e. UPGraph -> ( Edg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } )

Proof

Step Hyp Ref Expression
1 edgval
 |-  ( Edg ` G ) = ran ( iEdg ` G )
2 eqid
 |-  ( Vtx ` G ) = ( Vtx ` G )
3 eqid
 |-  ( iEdg ` G ) = ( iEdg ` G )
4 2 3 upgrf
 |-  ( G e. UPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } )
5 4 frnd
 |-  ( G e. UPGraph -> ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } )
6 1 5 eqsstrid
 |-  ( G e. UPGraph -> ( Edg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } )