Metamath Proof Explorer


Theorem upgreupthi

Description: Properties of an Eulerian path in a pseudograph. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 18-Feb-2021) (Proof shortened by AV, 30-Oct-2021)

Ref Expression
Hypotheses eupths.i
|- I = ( iEdg ` G )
upgriseupth.v
|- V = ( Vtx ` G )
Assertion upgreupthi
|- ( ( G e. UPGraph /\ F ( EulerPaths ` G ) P ) -> ( F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) )

Proof

Step Hyp Ref Expression
1 eupths.i
 |-  I = ( iEdg ` G )
2 upgriseupth.v
 |-  V = ( Vtx ` G )
3 1 2 upgriseupth
 |-  ( G e. UPGraph -> ( F ( EulerPaths ` G ) P <-> ( F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) )
4 3 biimpa
 |-  ( ( G e. UPGraph /\ F ( EulerPaths ` G ) P ) -> ( F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) )