| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							upgreupthseg.i | 
							 |-  I = ( iEdg ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							eqid | 
							 |-  ( Vtx ` G ) = ( Vtx ` G )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							upgreupthi | 
							 |-  ( ( G e. UPGraph /\ F ( EulerPaths ` G ) P ) -> ( F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. n e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` n ) ) = { ( P ` n ) , ( P ` ( n + 1 ) ) } ) ) | 
						
						
							| 4 | 
							
								
							 | 
							2fveq3 | 
							 |-  ( n = N -> ( I ` ( F ` n ) ) = ( I ` ( F ` N ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fveq2 | 
							 |-  ( n = N -> ( P ` n ) = ( P ` N ) )  | 
						
						
							| 6 | 
							
								
							 | 
							fvoveq1 | 
							 |-  ( n = N -> ( P ` ( n + 1 ) ) = ( P ` ( N + 1 ) ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							preq12d | 
							 |-  ( n = N -> { ( P ` n ) , ( P ` ( n + 1 ) ) } = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) | 
						
						
							| 8 | 
							
								4 7
							 | 
							eqeq12d | 
							 |-  ( n = N -> ( ( I ` ( F ` n ) ) = { ( P ` n ) , ( P ` ( n + 1 ) ) } <-> ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) ) | 
						
						
							| 9 | 
							
								8
							 | 
							rspccv | 
							 |-  ( A. n e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` n ) ) = { ( P ` n ) , ( P ` ( n + 1 ) ) } -> ( N e. ( 0 ..^ ( # ` F ) ) -> ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) ) | 
						
						
							| 10 | 
							
								9
							 | 
							3ad2ant3 | 
							 |-  ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. n e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` n ) ) = { ( P ` n ) , ( P ` ( n + 1 ) ) } ) -> ( N e. ( 0 ..^ ( # ` F ) ) -> ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) ) | 
						
						
							| 11 | 
							
								3 10
							 | 
							syl | 
							 |-  ( ( G e. UPGraph /\ F ( EulerPaths ` G ) P ) -> ( N e. ( 0 ..^ ( # ` F ) ) -> ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) ) | 
						
						
							| 12 | 
							
								11
							 | 
							3impia | 
							 |-  ( ( G e. UPGraph /\ F ( EulerPaths ` G ) P /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) |