Step |
Hyp |
Ref |
Expression |
1 |
|
upgreupthseg.i |
|- I = ( iEdg ` G ) |
2 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
3 |
1 2
|
upgreupthi |
|- ( ( G e. UPGraph /\ F ( EulerPaths ` G ) P ) -> ( F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. n e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` n ) ) = { ( P ` n ) , ( P ` ( n + 1 ) ) } ) ) |
4 |
|
2fveq3 |
|- ( n = N -> ( I ` ( F ` n ) ) = ( I ` ( F ` N ) ) ) |
5 |
|
fveq2 |
|- ( n = N -> ( P ` n ) = ( P ` N ) ) |
6 |
|
fvoveq1 |
|- ( n = N -> ( P ` ( n + 1 ) ) = ( P ` ( N + 1 ) ) ) |
7 |
5 6
|
preq12d |
|- ( n = N -> { ( P ` n ) , ( P ` ( n + 1 ) ) } = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) |
8 |
4 7
|
eqeq12d |
|- ( n = N -> ( ( I ` ( F ` n ) ) = { ( P ` n ) , ( P ` ( n + 1 ) ) } <-> ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) ) |
9 |
8
|
rspccv |
|- ( A. n e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` n ) ) = { ( P ` n ) , ( P ` ( n + 1 ) ) } -> ( N e. ( 0 ..^ ( # ` F ) ) -> ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) ) |
10 |
9
|
3ad2ant3 |
|- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-onto-> dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. n e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` n ) ) = { ( P ` n ) , ( P ` ( n + 1 ) ) } ) -> ( N e. ( 0 ..^ ( # ` F ) ) -> ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) ) |
11 |
3 10
|
syl |
|- ( ( G e. UPGraph /\ F ( EulerPaths ` G ) P ) -> ( N e. ( 0 ..^ ( # ` F ) ) -> ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) ) |
12 |
11
|
3impia |
|- ( ( G e. UPGraph /\ F ( EulerPaths ` G ) P /\ N e. ( 0 ..^ ( # ` F ) ) ) -> ( I ` ( F ` N ) ) = { ( P ` N ) , ( P ` ( N + 1 ) ) } ) |