| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isupgr.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | isupgr.e |  |-  E = ( iEdg ` G ) | 
						
							| 3 | 1 2 | upgrn0 |  |-  ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( E ` F ) =/= (/) ) | 
						
							| 4 |  | n0 |  |-  ( ( E ` F ) =/= (/) <-> E. x x e. ( E ` F ) ) | 
						
							| 5 | 3 4 | sylib |  |-  ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> E. x x e. ( E ` F ) ) | 
						
							| 6 |  | simp1 |  |-  ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> G e. UPGraph ) | 
						
							| 7 |  | fndm |  |-  ( E Fn A -> dom E = A ) | 
						
							| 8 | 7 | eqcomd |  |-  ( E Fn A -> A = dom E ) | 
						
							| 9 | 8 | eleq2d |  |-  ( E Fn A -> ( F e. A <-> F e. dom E ) ) | 
						
							| 10 | 9 | biimpd |  |-  ( E Fn A -> ( F e. A -> F e. dom E ) ) | 
						
							| 11 | 10 | a1i |  |-  ( G e. UPGraph -> ( E Fn A -> ( F e. A -> F e. dom E ) ) ) | 
						
							| 12 | 11 | 3imp |  |-  ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> F e. dom E ) | 
						
							| 13 | 1 2 | upgrss |  |-  ( ( G e. UPGraph /\ F e. dom E ) -> ( E ` F ) C_ V ) | 
						
							| 14 | 6 12 13 | syl2anc |  |-  ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( E ` F ) C_ V ) | 
						
							| 15 | 14 | sselda |  |-  ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) -> x e. V ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) /\ ( ( E ` F ) \ { x } ) = (/) ) -> x e. V ) | 
						
							| 17 |  | simpr |  |-  ( ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) /\ ( ( E ` F ) \ { x } ) = (/) ) -> ( ( E ` F ) \ { x } ) = (/) ) | 
						
							| 18 |  | ssdif0 |  |-  ( ( E ` F ) C_ { x } <-> ( ( E ` F ) \ { x } ) = (/) ) | 
						
							| 19 | 17 18 | sylibr |  |-  ( ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) /\ ( ( E ` F ) \ { x } ) = (/) ) -> ( E ` F ) C_ { x } ) | 
						
							| 20 |  | simpr |  |-  ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) -> x e. ( E ` F ) ) | 
						
							| 21 | 20 | snssd |  |-  ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) -> { x } C_ ( E ` F ) ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) /\ ( ( E ` F ) \ { x } ) = (/) ) -> { x } C_ ( E ` F ) ) | 
						
							| 23 | 19 22 | eqssd |  |-  ( ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) /\ ( ( E ` F ) \ { x } ) = (/) ) -> ( E ` F ) = { x } ) | 
						
							| 24 |  | preq2 |  |-  ( y = x -> { x , y } = { x , x } ) | 
						
							| 25 |  | dfsn2 |  |-  { x } = { x , x } | 
						
							| 26 | 24 25 | eqtr4di |  |-  ( y = x -> { x , y } = { x } ) | 
						
							| 27 | 26 | rspceeqv |  |-  ( ( x e. V /\ ( E ` F ) = { x } ) -> E. y e. V ( E ` F ) = { x , y } ) | 
						
							| 28 | 16 23 27 | syl2anc |  |-  ( ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) /\ ( ( E ` F ) \ { x } ) = (/) ) -> E. y e. V ( E ` F ) = { x , y } ) | 
						
							| 29 |  | n0 |  |-  ( ( ( E ` F ) \ { x } ) =/= (/) <-> E. y y e. ( ( E ` F ) \ { x } ) ) | 
						
							| 30 | 14 | adantr |  |-  ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> ( E ` F ) C_ V ) | 
						
							| 31 |  | simprr |  |-  ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> y e. ( ( E ` F ) \ { x } ) ) | 
						
							| 32 | 31 | eldifad |  |-  ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> y e. ( E ` F ) ) | 
						
							| 33 | 30 32 | sseldd |  |-  ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> y e. V ) | 
						
							| 34 | 1 2 | upgrfi |  |-  ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( E ` F ) e. Fin ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> ( E ` F ) e. Fin ) | 
						
							| 36 |  | simprl |  |-  ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> x e. ( E ` F ) ) | 
						
							| 37 | 36 32 | prssd |  |-  ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> { x , y } C_ ( E ` F ) ) | 
						
							| 38 |  | fvex |  |-  ( E ` F ) e. _V | 
						
							| 39 |  | ssdomg |  |-  ( ( E ` F ) e. _V -> ( { x , y } C_ ( E ` F ) -> { x , y } ~<_ ( E ` F ) ) ) | 
						
							| 40 | 38 37 39 | mpsyl |  |-  ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> { x , y } ~<_ ( E ` F ) ) | 
						
							| 41 | 1 2 | upgrle |  |-  ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( # ` ( E ` F ) ) <_ 2 ) | 
						
							| 42 | 41 | adantr |  |-  ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> ( # ` ( E ` F ) ) <_ 2 ) | 
						
							| 43 |  | eldifsni |  |-  ( y e. ( ( E ` F ) \ { x } ) -> y =/= x ) | 
						
							| 44 | 43 | ad2antll |  |-  ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> y =/= x ) | 
						
							| 45 | 44 | necomd |  |-  ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> x =/= y ) | 
						
							| 46 |  | hashprg |  |-  ( ( x e. _V /\ y e. _V ) -> ( x =/= y <-> ( # ` { x , y } ) = 2 ) ) | 
						
							| 47 | 46 | el2v |  |-  ( x =/= y <-> ( # ` { x , y } ) = 2 ) | 
						
							| 48 | 45 47 | sylib |  |-  ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> ( # ` { x , y } ) = 2 ) | 
						
							| 49 | 42 48 | breqtrrd |  |-  ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> ( # ` ( E ` F ) ) <_ ( # ` { x , y } ) ) | 
						
							| 50 |  | prfi |  |-  { x , y } e. Fin | 
						
							| 51 |  | hashdom |  |-  ( ( ( E ` F ) e. Fin /\ { x , y } e. Fin ) -> ( ( # ` ( E ` F ) ) <_ ( # ` { x , y } ) <-> ( E ` F ) ~<_ { x , y } ) ) | 
						
							| 52 | 35 50 51 | sylancl |  |-  ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> ( ( # ` ( E ` F ) ) <_ ( # ` { x , y } ) <-> ( E ` F ) ~<_ { x , y } ) ) | 
						
							| 53 | 49 52 | mpbid |  |-  ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> ( E ` F ) ~<_ { x , y } ) | 
						
							| 54 |  | sbth |  |-  ( ( { x , y } ~<_ ( E ` F ) /\ ( E ` F ) ~<_ { x , y } ) -> { x , y } ~~ ( E ` F ) ) | 
						
							| 55 | 40 53 54 | syl2anc |  |-  ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> { x , y } ~~ ( E ` F ) ) | 
						
							| 56 |  | fisseneq |  |-  ( ( ( E ` F ) e. Fin /\ { x , y } C_ ( E ` F ) /\ { x , y } ~~ ( E ` F ) ) -> { x , y } = ( E ` F ) ) | 
						
							| 57 | 35 37 55 56 | syl3anc |  |-  ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> { x , y } = ( E ` F ) ) | 
						
							| 58 | 57 | eqcomd |  |-  ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> ( E ` F ) = { x , y } ) | 
						
							| 59 | 33 58 | jca |  |-  ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ ( x e. ( E ` F ) /\ y e. ( ( E ` F ) \ { x } ) ) ) -> ( y e. V /\ ( E ` F ) = { x , y } ) ) | 
						
							| 60 | 59 | expr |  |-  ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) -> ( y e. ( ( E ` F ) \ { x } ) -> ( y e. V /\ ( E ` F ) = { x , y } ) ) ) | 
						
							| 61 | 60 | eximdv |  |-  ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) -> ( E. y y e. ( ( E ` F ) \ { x } ) -> E. y ( y e. V /\ ( E ` F ) = { x , y } ) ) ) | 
						
							| 62 | 61 | imp |  |-  ( ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) /\ E. y y e. ( ( E ` F ) \ { x } ) ) -> E. y ( y e. V /\ ( E ` F ) = { x , y } ) ) | 
						
							| 63 |  | df-rex |  |-  ( E. y e. V ( E ` F ) = { x , y } <-> E. y ( y e. V /\ ( E ` F ) = { x , y } ) ) | 
						
							| 64 | 62 63 | sylibr |  |-  ( ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) /\ E. y y e. ( ( E ` F ) \ { x } ) ) -> E. y e. V ( E ` F ) = { x , y } ) | 
						
							| 65 | 29 64 | sylan2b |  |-  ( ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) /\ ( ( E ` F ) \ { x } ) =/= (/) ) -> E. y e. V ( E ` F ) = { x , y } ) | 
						
							| 66 | 28 65 | pm2.61dane |  |-  ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) -> E. y e. V ( E ` F ) = { x , y } ) | 
						
							| 67 | 15 66 | jca |  |-  ( ( ( G e. UPGraph /\ E Fn A /\ F e. A ) /\ x e. ( E ` F ) ) -> ( x e. V /\ E. y e. V ( E ` F ) = { x , y } ) ) | 
						
							| 68 | 67 | ex |  |-  ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( x e. ( E ` F ) -> ( x e. V /\ E. y e. V ( E ` F ) = { x , y } ) ) ) | 
						
							| 69 | 68 | eximdv |  |-  ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( E. x x e. ( E ` F ) -> E. x ( x e. V /\ E. y e. V ( E ` F ) = { x , y } ) ) ) | 
						
							| 70 | 5 69 | mpd |  |-  ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> E. x ( x e. V /\ E. y e. V ( E ` F ) = { x , y } ) ) | 
						
							| 71 |  | df-rex |  |-  ( E. x e. V E. y e. V ( E ` F ) = { x , y } <-> E. x ( x e. V /\ E. y e. V ( E ` F ) = { x , y } ) ) | 
						
							| 72 | 70 71 | sylibr |  |-  ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> E. x e. V E. y e. V ( E ` F ) = { x , y } ) |