Metamath Proof Explorer


Theorem upgrf

Description: The edge function of an undirected pseudograph is a function into unordered pairs of vertices. Version of upgrfn without explicitly specified domain of the edge function. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 10-Oct-2020)

Ref Expression
Hypotheses isupgr.v
|- V = ( Vtx ` G )
isupgr.e
|- E = ( iEdg ` G )
Assertion upgrf
|- ( G e. UPGraph -> E : dom E --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } )

Proof

Step Hyp Ref Expression
1 isupgr.v
 |-  V = ( Vtx ` G )
2 isupgr.e
 |-  E = ( iEdg ` G )
3 1 2 isupgr
 |-  ( G e. UPGraph -> ( G e. UPGraph <-> E : dom E --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) )
4 3 ibi
 |-  ( G e. UPGraph -> E : dom E --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } )