Step |
Hyp |
Ref |
Expression |
1 |
|
upgrtrls.v |
|- V = ( Vtx ` G ) |
2 |
|
upgrtrls.i |
|- I = ( iEdg ` G ) |
3 |
1 2
|
upgristrl |
|- ( G e. UPGraph -> ( F ( Trails ` G ) P <-> ( ( F e. Word dom I /\ Fun `' F ) /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
4 |
|
iswrdb |
|- ( F e. Word dom I <-> F : ( 0 ..^ ( # ` F ) ) --> dom I ) |
5 |
4
|
a1i |
|- ( G e. UPGraph -> ( F e. Word dom I <-> F : ( 0 ..^ ( # ` F ) ) --> dom I ) ) |
6 |
5
|
anbi1d |
|- ( G e. UPGraph -> ( ( F e. Word dom I /\ Fun `' F ) <-> ( F : ( 0 ..^ ( # ` F ) ) --> dom I /\ Fun `' F ) ) ) |
7 |
|
df-f1 |
|- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I <-> ( F : ( 0 ..^ ( # ` F ) ) --> dom I /\ Fun `' F ) ) |
8 |
6 7
|
bitr4di |
|- ( G e. UPGraph -> ( ( F e. Word dom I /\ Fun `' F ) <-> F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I ) ) |
9 |
8
|
3anbi1d |
|- ( G e. UPGraph -> ( ( ( F e. Word dom I /\ Fun `' F ) /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) <-> ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
10 |
3 9
|
bitrd |
|- ( G e. UPGraph -> ( F ( Trails ` G ) P <-> ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |