| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isupgr.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | isupgr.e |  |-  E = ( iEdg ` G ) | 
						
							| 3 | 1 2 | upgrle |  |-  ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( # ` ( E ` F ) ) <_ 2 ) | 
						
							| 4 |  | 2re |  |-  2 e. RR | 
						
							| 5 |  | ltpnf |  |-  ( 2 e. RR -> 2 < +oo ) | 
						
							| 6 | 4 5 | ax-mp |  |-  2 < +oo | 
						
							| 7 | 4 | rexri |  |-  2 e. RR* | 
						
							| 8 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 9 |  | xrltnle |  |-  ( ( 2 e. RR* /\ +oo e. RR* ) -> ( 2 < +oo <-> -. +oo <_ 2 ) ) | 
						
							| 10 | 7 8 9 | mp2an |  |-  ( 2 < +oo <-> -. +oo <_ 2 ) | 
						
							| 11 | 6 10 | mpbi |  |-  -. +oo <_ 2 | 
						
							| 12 |  | fvex |  |-  ( E ` F ) e. _V | 
						
							| 13 |  | hashinf |  |-  ( ( ( E ` F ) e. _V /\ -. ( E ` F ) e. Fin ) -> ( # ` ( E ` F ) ) = +oo ) | 
						
							| 14 | 12 13 | mpan |  |-  ( -. ( E ` F ) e. Fin -> ( # ` ( E ` F ) ) = +oo ) | 
						
							| 15 | 14 | breq1d |  |-  ( -. ( E ` F ) e. Fin -> ( ( # ` ( E ` F ) ) <_ 2 <-> +oo <_ 2 ) ) | 
						
							| 16 | 11 15 | mtbiri |  |-  ( -. ( E ` F ) e. Fin -> -. ( # ` ( E ` F ) ) <_ 2 ) | 
						
							| 17 | 16 | con4i |  |-  ( ( # ` ( E ` F ) ) <_ 2 -> ( E ` F ) e. Fin ) | 
						
							| 18 | 3 17 | syl |  |-  ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( E ` F ) e. Fin ) |