| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isupgr.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | isupgr.e |  |-  E = ( iEdg ` G ) | 
						
							| 3 | 1 2 | upgrf |  |-  ( G e. UPGraph -> E : dom E --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 4 |  | fndm |  |-  ( E Fn A -> dom E = A ) | 
						
							| 5 | 4 | feq2d |  |-  ( E Fn A -> ( E : dom E --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } <-> E : A --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) ) | 
						
							| 6 | 3 5 | syl5ibcom |  |-  ( G e. UPGraph -> ( E Fn A -> E : A --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) ) | 
						
							| 7 | 6 | imp |  |-  ( ( G e. UPGraph /\ E Fn A ) -> E : A --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |