Metamath Proof Explorer


Theorem upgrfn

Description: The edge function of an undirected pseudograph is a function into unordered pairs of vertices. (Contributed by Mario Carneiro, 11-Mar-2015) (Revised by AV, 10-Oct-2020)

Ref Expression
Hypotheses isupgr.v
|- V = ( Vtx ` G )
isupgr.e
|- E = ( iEdg ` G )
Assertion upgrfn
|- ( ( G e. UPGraph /\ E Fn A ) -> E : A --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } )

Proof

Step Hyp Ref Expression
1 isupgr.v
 |-  V = ( Vtx ` G )
2 isupgr.e
 |-  E = ( iEdg ` G )
3 1 2 upgrf
 |-  ( G e. UPGraph -> E : dom E --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } )
4 fndm
 |-  ( E Fn A -> dom E = A )
5 4 feq2d
 |-  ( E Fn A -> ( E : dom E --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } <-> E : A --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) )
6 3 5 syl5ibcom
 |-  ( G e. UPGraph -> ( E Fn A -> E : A --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) )
7 6 imp
 |-  ( ( G e. UPGraph /\ E Fn A ) -> E : A --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } )