| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							upgriswlk.v | 
							 |-  V = ( Vtx ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							upgriswlk.i | 
							 |-  I = ( iEdg ` G )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							iswlkg | 
							 |-  ( G e. UPGraph -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) | 
						
						
							| 4 | 
							
								
							 | 
							df-ifp | 
							 |-  ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) <-> ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( I ` ( F ` k ) ) = { ( P ` k ) } ) \/ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) | 
						
						
							| 5 | 
							
								
							 | 
							dfsn2 | 
							 |-  { ( P ` k ) } = { ( P ` k ) , ( P ` k ) } | 
						
						
							| 6 | 
							
								
							 | 
							preq2 | 
							 |-  ( ( P ` k ) = ( P ` ( k + 1 ) ) -> { ( P ` k ) , ( P ` k ) } = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) | 
						
						
							| 7 | 
							
								5 6
							 | 
							eqtrid | 
							 |-  ( ( P ` k ) = ( P ` ( k + 1 ) ) -> { ( P ` k ) } = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) | 
						
						
							| 8 | 
							
								7
							 | 
							eqeq2d | 
							 |-  ( ( P ` k ) = ( P ` ( k + 1 ) ) -> ( ( I ` ( F ` k ) ) = { ( P ` k ) } <-> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) | 
						
						
							| 9 | 
							
								8
							 | 
							biimpa | 
							 |-  ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( I ` ( F ` k ) ) = { ( P ` k ) } ) -> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) | 
						
						
							| 10 | 
							
								9
							 | 
							a1d | 
							 |-  ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( I ` ( F ` k ) ) = { ( P ` k ) } ) -> ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							 |-  ( Edg ` G ) = ( Edg ` G )  | 
						
						
							| 12 | 
							
								2 11
							 | 
							upgredginwlk | 
							 |-  ( ( G e. UPGraph /\ F e. Word dom I ) -> ( k e. ( 0 ..^ ( # ` F ) ) -> ( I ` ( F ` k ) ) e. ( Edg ` G ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantrr | 
							 |-  ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) -> ( k e. ( 0 ..^ ( # ` F ) ) -> ( I ` ( F ` k ) ) e. ( Edg ` G ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							imp | 
							 |-  ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( I ` ( F ` k ) ) e. ( Edg ` G ) )  | 
						
						
							| 15 | 
							
								
							 | 
							simp-4l | 
							 |-  ( ( ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( I ` ( F ` k ) ) e. ( Edg ` G ) ) /\ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> G e. UPGraph ) | 
						
						
							| 16 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( I ` ( F ` k ) ) e. ( Edg ` G ) ) -> ( I ` ( F ` k ) ) e. ( Edg ` G ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantr | 
							 |-  ( ( ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( I ` ( F ` k ) ) e. ( Edg ` G ) ) /\ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> ( I ` ( F ` k ) ) e. ( Edg ` G ) ) | 
						
						
							| 18 | 
							
								
							 | 
							simpr | 
							 |-  ( ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) | 
						
						
							| 19 | 
							
								18
							 | 
							adantl | 
							 |-  ( ( ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( I ` ( F ` k ) ) e. ( Edg ` G ) ) /\ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) | 
						
						
							| 20 | 
							
								
							 | 
							fvexd | 
							 |-  ( -. ( P ` k ) = ( P ` ( k + 1 ) ) -> ( P ` k ) e. _V )  | 
						
						
							| 21 | 
							
								
							 | 
							fvexd | 
							 |-  ( -. ( P ` k ) = ( P ` ( k + 1 ) ) -> ( P ` ( k + 1 ) ) e. _V )  | 
						
						
							| 22 | 
							
								
							 | 
							neqne | 
							 |-  ( -. ( P ` k ) = ( P ` ( k + 1 ) ) -> ( P ` k ) =/= ( P ` ( k + 1 ) ) )  | 
						
						
							| 23 | 
							
								20 21 22
							 | 
							3jca | 
							 |-  ( -. ( P ` k ) = ( P ` ( k + 1 ) ) -> ( ( P ` k ) e. _V /\ ( P ` ( k + 1 ) ) e. _V /\ ( P ` k ) =/= ( P ` ( k + 1 ) ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							adantr | 
							 |-  ( ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( ( P ` k ) e. _V /\ ( P ` ( k + 1 ) ) e. _V /\ ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) | 
						
						
							| 25 | 
							
								24
							 | 
							adantl | 
							 |-  ( ( ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( I ` ( F ` k ) ) e. ( Edg ` G ) ) /\ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> ( ( P ` k ) e. _V /\ ( P ` ( k + 1 ) ) e. _V /\ ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) | 
						
						
							| 26 | 
							
								1 11
							 | 
							upgredgpr | 
							 |-  ( ( ( G e. UPGraph /\ ( I ` ( F ` k ) ) e. ( Edg ` G ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) /\ ( ( P ` k ) e. _V /\ ( P ` ( k + 1 ) ) e. _V /\ ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = ( I ` ( F ` k ) ) ) | 
						
						
							| 27 | 
							
								15 17 19 25 26
							 | 
							syl31anc | 
							 |-  ( ( ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( I ` ( F ` k ) ) e. ( Edg ` G ) ) /\ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> { ( P ` k ) , ( P ` ( k + 1 ) ) } = ( I ` ( F ` k ) ) ) | 
						
						
							| 28 | 
							
								27
							 | 
							eqcomd | 
							 |-  ( ( ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) /\ ( I ` ( F ` k ) ) e. ( Edg ` G ) ) /\ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) | 
						
						
							| 29 | 
							
								28
							 | 
							exp31 | 
							 |-  ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( I ` ( F ` k ) ) e. ( Edg ` G ) -> ( ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) | 
						
						
							| 30 | 
							
								14 29
							 | 
							mpd | 
							 |-  ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) | 
						
						
							| 31 | 
							
								30
							 | 
							com12 | 
							 |-  ( ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) | 
						
						
							| 32 | 
							
								10 31
							 | 
							jaoi | 
							 |-  ( ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( I ` ( F ` k ) ) = { ( P ` k ) } ) \/ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) | 
						
						
							| 33 | 
							
								32
							 | 
							com12 | 
							 |-  ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( I ` ( F ` k ) ) = { ( P ` k ) } ) \/ ( -. ( P ` k ) = ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) | 
						
						
							| 34 | 
							
								4 33
							 | 
							biimtrid | 
							 |-  ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) | 
						
						
							| 35 | 
							
								
							 | 
							ifpprsnss | 
							 |-  ( ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) | 
						
						
							| 36 | 
							
								34 35
							 | 
							impbid1 | 
							 |-  ( ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) <-> ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) | 
						
						
							| 37 | 
							
								36
							 | 
							ralbidva | 
							 |-  ( ( G e. UPGraph /\ ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) <-> A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) | 
						
						
							| 38 | 
							
								37
							 | 
							pm5.32da | 
							 |-  ( G e. UPGraph -> ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) | 
						
						
							| 39 | 
							
								
							 | 
							df-3an | 
							 |-  ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) | 
						
						
							| 40 | 
							
								
							 | 
							df-3an | 
							 |-  ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) | 
						
						
							| 41 | 
							
								38 39 40
							 | 
							3bitr4g | 
							 |-  ( G e. UPGraph -> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) | 
						
						
							| 42 | 
							
								3 41
							 | 
							bitrd | 
							 |-  ( G e. UPGraph -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |