| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isupgr.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | isupgr.e |  |-  E = ( iEdg ` G ) | 
						
							| 3 | 1 2 | upgrfn |  |-  ( ( G e. UPGraph /\ E Fn A ) -> E : A --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 4 | 3 | ffvelcdmda |  |-  ( ( ( G e. UPGraph /\ E Fn A ) /\ F e. A ) -> ( E ` F ) e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 5 | 4 | 3impa |  |-  ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( E ` F ) e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 6 |  | fveq2 |  |-  ( x = ( E ` F ) -> ( # ` x ) = ( # ` ( E ` F ) ) ) | 
						
							| 7 | 6 | breq1d |  |-  ( x = ( E ` F ) -> ( ( # ` x ) <_ 2 <-> ( # ` ( E ` F ) ) <_ 2 ) ) | 
						
							| 8 | 7 | elrab |  |-  ( ( E ` F ) e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } <-> ( ( E ` F ) e. ( ~P V \ { (/) } ) /\ ( # ` ( E ` F ) ) <_ 2 ) ) | 
						
							| 9 | 8 | simprbi |  |-  ( ( E ` F ) e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> ( # ` ( E ` F ) ) <_ 2 ) | 
						
							| 10 | 5 9 | syl |  |-  ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( # ` ( E ` F ) ) <_ 2 ) |