Step |
Hyp |
Ref |
Expression |
1 |
|
upgrle2.i |
|- I = ( iEdg ` G ) |
2 |
|
simpl |
|- ( ( G e. UPGraph /\ X e. dom I ) -> G e. UPGraph ) |
3 |
|
upgruhgr |
|- ( G e. UPGraph -> G e. UHGraph ) |
4 |
1
|
uhgrfun |
|- ( G e. UHGraph -> Fun I ) |
5 |
3 4
|
syl |
|- ( G e. UPGraph -> Fun I ) |
6 |
5
|
funfnd |
|- ( G e. UPGraph -> I Fn dom I ) |
7 |
6
|
adantr |
|- ( ( G e. UPGraph /\ X e. dom I ) -> I Fn dom I ) |
8 |
|
simpr |
|- ( ( G e. UPGraph /\ X e. dom I ) -> X e. dom I ) |
9 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
10 |
9 1
|
upgrle |
|- ( ( G e. UPGraph /\ I Fn dom I /\ X e. dom I ) -> ( # ` ( I ` X ) ) <_ 2 ) |
11 |
2 7 8 10
|
syl3anc |
|- ( ( G e. UPGraph /\ X e. dom I ) -> ( # ` ( I ` X ) ) <_ 2 ) |