Step |
Hyp |
Ref |
Expression |
1 |
|
isupgr.v |
|- V = ( Vtx ` G ) |
2 |
|
isupgr.e |
|- E = ( iEdg ` G ) |
3 |
|
ssrab2 |
|- { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } C_ ( ~P V \ { (/) } ) |
4 |
1 2
|
upgrfn |
|- ( ( G e. UPGraph /\ E Fn A ) -> E : A --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
5 |
4
|
ffvelrnda |
|- ( ( ( G e. UPGraph /\ E Fn A ) /\ F e. A ) -> ( E ` F ) e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
6 |
5
|
3impa |
|- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( E ` F ) e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
7 |
3 6
|
sselid |
|- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( E ` F ) e. ( ~P V \ { (/) } ) ) |
8 |
|
eldifsni |
|- ( ( E ` F ) e. ( ~P V \ { (/) } ) -> ( E ` F ) =/= (/) ) |
9 |
7 8
|
syl |
|- ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( E ` F ) =/= (/) ) |