| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isupgr.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | isupgr.e |  |-  E = ( iEdg ` G ) | 
						
							| 3 |  | ssrab2 |  |-  { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } C_ ( ~P V \ { (/) } ) | 
						
							| 4 | 1 2 | upgrfn |  |-  ( ( G e. UPGraph /\ E Fn A ) -> E : A --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 5 | 4 | ffvelcdmda |  |-  ( ( ( G e. UPGraph /\ E Fn A ) /\ F e. A ) -> ( E ` F ) e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 6 | 5 | 3impa |  |-  ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( E ` F ) e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 7 | 3 6 | sselid |  |-  ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( E ` F ) e. ( ~P V \ { (/) } ) ) | 
						
							| 8 |  | eldifsni |  |-  ( ( E ` F ) e. ( ~P V \ { (/) } ) -> ( E ` F ) =/= (/) ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( G e. UPGraph /\ E Fn A /\ F e. A ) -> ( E ` F ) =/= (/) ) |