| Step |
Hyp |
Ref |
Expression |
| 1 |
|
upgrres.v |
|- V = ( Vtx ` G ) |
| 2 |
|
upgrres.e |
|- E = ( iEdg ` G ) |
| 3 |
|
upgrres.f |
|- F = { i e. dom E | N e/ ( E ` i ) } |
| 4 |
|
upgrres.s |
|- S = <. ( V \ { N } ) , ( E |` F ) >. |
| 5 |
|
upgruhgr |
|- ( G e. UPGraph -> G e. UHGraph ) |
| 6 |
2
|
uhgrfun |
|- ( G e. UHGraph -> Fun E ) |
| 7 |
|
funres |
|- ( Fun E -> Fun ( E |` F ) ) |
| 8 |
5 6 7
|
3syl |
|- ( G e. UPGraph -> Fun ( E |` F ) ) |
| 9 |
8
|
funfnd |
|- ( G e. UPGraph -> ( E |` F ) Fn dom ( E |` F ) ) |
| 10 |
9
|
adantr |
|- ( ( G e. UPGraph /\ N e. V ) -> ( E |` F ) Fn dom ( E |` F ) ) |
| 11 |
1 2 3
|
upgrreslem |
|- ( ( G e. UPGraph /\ N e. V ) -> ran ( E |` F ) C_ { p e. ( ~P ( V \ { N } ) \ { (/) } ) | ( # ` p ) <_ 2 } ) |
| 12 |
|
df-f |
|- ( ( E |` F ) : dom ( E |` F ) --> { p e. ( ~P ( V \ { N } ) \ { (/) } ) | ( # ` p ) <_ 2 } <-> ( ( E |` F ) Fn dom ( E |` F ) /\ ran ( E |` F ) C_ { p e. ( ~P ( V \ { N } ) \ { (/) } ) | ( # ` p ) <_ 2 } ) ) |
| 13 |
10 11 12
|
sylanbrc |
|- ( ( G e. UPGraph /\ N e. V ) -> ( E |` F ) : dom ( E |` F ) --> { p e. ( ~P ( V \ { N } ) \ { (/) } ) | ( # ` p ) <_ 2 } ) |
| 14 |
|
opex |
|- <. ( V \ { N } ) , ( E |` F ) >. e. _V |
| 15 |
4 14
|
eqeltri |
|- S e. _V |
| 16 |
1 2 3 4
|
uhgrspan1lem2 |
|- ( Vtx ` S ) = ( V \ { N } ) |
| 17 |
16
|
eqcomi |
|- ( V \ { N } ) = ( Vtx ` S ) |
| 18 |
1 2 3 4
|
uhgrspan1lem3 |
|- ( iEdg ` S ) = ( E |` F ) |
| 19 |
18
|
eqcomi |
|- ( E |` F ) = ( iEdg ` S ) |
| 20 |
17 19
|
isupgr |
|- ( S e. _V -> ( S e. UPGraph <-> ( E |` F ) : dom ( E |` F ) --> { p e. ( ~P ( V \ { N } ) \ { (/) } ) | ( # ` p ) <_ 2 } ) ) |
| 21 |
15 20
|
mp1i |
|- ( ( G e. UPGraph /\ N e. V ) -> ( S e. UPGraph <-> ( E |` F ) : dom ( E |` F ) --> { p e. ( ~P ( V \ { N } ) \ { (/) } ) | ( # ` p ) <_ 2 } ) ) |
| 22 |
13 21
|
mpbird |
|- ( ( G e. UPGraph /\ N e. V ) -> S e. UPGraph ) |