Step |
Hyp |
Ref |
Expression |
1 |
|
upgrres1.v |
|- V = ( Vtx ` G ) |
2 |
|
upgrres1.e |
|- E = ( Edg ` G ) |
3 |
|
upgrres1.f |
|- F = { e e. E | N e/ e } |
4 |
|
upgrres1.s |
|- S = <. ( V \ { N } ) , ( _I |` F ) >. |
5 |
|
f1oi |
|- ( _I |` F ) : F -1-1-onto-> F |
6 |
|
f1of |
|- ( ( _I |` F ) : F -1-1-onto-> F -> ( _I |` F ) : F --> F ) |
7 |
5 6
|
mp1i |
|- ( ( G e. UPGraph /\ N e. V ) -> ( _I |` F ) : F --> F ) |
8 |
7
|
ffdmd |
|- ( ( G e. UPGraph /\ N e. V ) -> ( _I |` F ) : dom ( _I |` F ) --> F ) |
9 |
|
simpr |
|- ( ( ( G e. UPGraph /\ N e. V ) /\ e e. E ) -> e e. E ) |
10 |
9
|
adantr |
|- ( ( ( ( G e. UPGraph /\ N e. V ) /\ e e. E ) /\ N e/ e ) -> e e. E ) |
11 |
2
|
eleq2i |
|- ( e e. E <-> e e. ( Edg ` G ) ) |
12 |
|
edgupgr |
|- ( ( G e. UPGraph /\ e e. ( Edg ` G ) ) -> ( e e. ~P ( Vtx ` G ) /\ e =/= (/) /\ ( # ` e ) <_ 2 ) ) |
13 |
|
elpwi |
|- ( e e. ~P ( Vtx ` G ) -> e C_ ( Vtx ` G ) ) |
14 |
13 1
|
sseqtrrdi |
|- ( e e. ~P ( Vtx ` G ) -> e C_ V ) |
15 |
14
|
3ad2ant1 |
|- ( ( e e. ~P ( Vtx ` G ) /\ e =/= (/) /\ ( # ` e ) <_ 2 ) -> e C_ V ) |
16 |
12 15
|
syl |
|- ( ( G e. UPGraph /\ e e. ( Edg ` G ) ) -> e C_ V ) |
17 |
11 16
|
sylan2b |
|- ( ( G e. UPGraph /\ e e. E ) -> e C_ V ) |
18 |
17
|
ad4ant13 |
|- ( ( ( ( G e. UPGraph /\ N e. V ) /\ e e. E ) /\ N e/ e ) -> e C_ V ) |
19 |
|
simpr |
|- ( ( ( ( G e. UPGraph /\ N e. V ) /\ e e. E ) /\ N e/ e ) -> N e/ e ) |
20 |
|
elpwdifsn |
|- ( ( e e. E /\ e C_ V /\ N e/ e ) -> e e. ~P ( V \ { N } ) ) |
21 |
10 18 19 20
|
syl3anc |
|- ( ( ( ( G e. UPGraph /\ N e. V ) /\ e e. E ) /\ N e/ e ) -> e e. ~P ( V \ { N } ) ) |
22 |
|
simpl |
|- ( ( G e. UPGraph /\ N e. V ) -> G e. UPGraph ) |
23 |
11
|
biimpi |
|- ( e e. E -> e e. ( Edg ` G ) ) |
24 |
12
|
simp2d |
|- ( ( G e. UPGraph /\ e e. ( Edg ` G ) ) -> e =/= (/) ) |
25 |
22 23 24
|
syl2an |
|- ( ( ( G e. UPGraph /\ N e. V ) /\ e e. E ) -> e =/= (/) ) |
26 |
25
|
adantr |
|- ( ( ( ( G e. UPGraph /\ N e. V ) /\ e e. E ) /\ N e/ e ) -> e =/= (/) ) |
27 |
|
nelsn |
|- ( e =/= (/) -> -. e e. { (/) } ) |
28 |
26 27
|
syl |
|- ( ( ( ( G e. UPGraph /\ N e. V ) /\ e e. E ) /\ N e/ e ) -> -. e e. { (/) } ) |
29 |
21 28
|
eldifd |
|- ( ( ( ( G e. UPGraph /\ N e. V ) /\ e e. E ) /\ N e/ e ) -> e e. ( ~P ( V \ { N } ) \ { (/) } ) ) |
30 |
29
|
ex |
|- ( ( ( G e. UPGraph /\ N e. V ) /\ e e. E ) -> ( N e/ e -> e e. ( ~P ( V \ { N } ) \ { (/) } ) ) ) |
31 |
30
|
ralrimiva |
|- ( ( G e. UPGraph /\ N e. V ) -> A. e e. E ( N e/ e -> e e. ( ~P ( V \ { N } ) \ { (/) } ) ) ) |
32 |
|
rabss |
|- ( { e e. E | N e/ e } C_ ( ~P ( V \ { N } ) \ { (/) } ) <-> A. e e. E ( N e/ e -> e e. ( ~P ( V \ { N } ) \ { (/) } ) ) ) |
33 |
31 32
|
sylibr |
|- ( ( G e. UPGraph /\ N e. V ) -> { e e. E | N e/ e } C_ ( ~P ( V \ { N } ) \ { (/) } ) ) |
34 |
3 33
|
eqsstrid |
|- ( ( G e. UPGraph /\ N e. V ) -> F C_ ( ~P ( V \ { N } ) \ { (/) } ) ) |
35 |
|
elrabi |
|- ( p e. { e e. E | N e/ e } -> p e. E ) |
36 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
37 |
2 36
|
eqtri |
|- E = ran ( iEdg ` G ) |
38 |
37
|
eleq2i |
|- ( p e. E <-> p e. ran ( iEdg ` G ) ) |
39 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
40 |
1 39
|
upgrf |
|- ( G e. UPGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
41 |
40
|
frnd |
|- ( G e. UPGraph -> ran ( iEdg ` G ) C_ { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
42 |
41
|
sseld |
|- ( G e. UPGraph -> ( p e. ran ( iEdg ` G ) -> p e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
43 |
38 42
|
syl5bi |
|- ( G e. UPGraph -> ( p e. E -> p e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
44 |
|
fveq2 |
|- ( x = p -> ( # ` x ) = ( # ` p ) ) |
45 |
44
|
breq1d |
|- ( x = p -> ( ( # ` x ) <_ 2 <-> ( # ` p ) <_ 2 ) ) |
46 |
45
|
elrab |
|- ( p e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } <-> ( p e. ( ~P V \ { (/) } ) /\ ( # ` p ) <_ 2 ) ) |
47 |
46
|
simprbi |
|- ( p e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } -> ( # ` p ) <_ 2 ) |
48 |
43 47
|
syl6 |
|- ( G e. UPGraph -> ( p e. E -> ( # ` p ) <_ 2 ) ) |
49 |
48
|
adantr |
|- ( ( G e. UPGraph /\ N e. V ) -> ( p e. E -> ( # ` p ) <_ 2 ) ) |
50 |
35 49
|
syl5com |
|- ( p e. { e e. E | N e/ e } -> ( ( G e. UPGraph /\ N e. V ) -> ( # ` p ) <_ 2 ) ) |
51 |
50 3
|
eleq2s |
|- ( p e. F -> ( ( G e. UPGraph /\ N e. V ) -> ( # ` p ) <_ 2 ) ) |
52 |
51
|
impcom |
|- ( ( ( G e. UPGraph /\ N e. V ) /\ p e. F ) -> ( # ` p ) <_ 2 ) |
53 |
34 52
|
ssrabdv |
|- ( ( G e. UPGraph /\ N e. V ) -> F C_ { p e. ( ~P ( V \ { N } ) \ { (/) } ) | ( # ` p ) <_ 2 } ) |
54 |
8 53
|
fssd |
|- ( ( G e. UPGraph /\ N e. V ) -> ( _I |` F ) : dom ( _I |` F ) --> { p e. ( ~P ( V \ { N } ) \ { (/) } ) | ( # ` p ) <_ 2 } ) |
55 |
|
opex |
|- <. ( V \ { N } ) , ( _I |` F ) >. e. _V |
56 |
4 55
|
eqeltri |
|- S e. _V |
57 |
1 2 3 4
|
upgrres1lem2 |
|- ( Vtx ` S ) = ( V \ { N } ) |
58 |
57
|
eqcomi |
|- ( V \ { N } ) = ( Vtx ` S ) |
59 |
1 2 3 4
|
upgrres1lem3 |
|- ( iEdg ` S ) = ( _I |` F ) |
60 |
59
|
eqcomi |
|- ( _I |` F ) = ( iEdg ` S ) |
61 |
58 60
|
isupgr |
|- ( S e. _V -> ( S e. UPGraph <-> ( _I |` F ) : dom ( _I |` F ) --> { p e. ( ~P ( V \ { N } ) \ { (/) } ) | ( # ` p ) <_ 2 } ) ) |
62 |
56 61
|
mp1i |
|- ( ( G e. UPGraph /\ N e. V ) -> ( S e. UPGraph <-> ( _I |` F ) : dom ( _I |` F ) --> { p e. ( ~P ( V \ { N } ) \ { (/) } ) | ( # ` p ) <_ 2 } ) ) |
63 |
54 62
|
mpbird |
|- ( ( G e. UPGraph /\ N e. V ) -> S e. UPGraph ) |