Description: Lemma 1 for upgrres1 . (Contributed by AV, 7-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | upgrres1.v | |- V = ( Vtx ` G ) |
|
upgrres1.e | |- E = ( Edg ` G ) |
||
upgrres1.f | |- F = { e e. E | N e/ e } |
||
Assertion | upgrres1lem1 | |- ( ( V \ { N } ) e. _V /\ ( _I |` F ) e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgrres1.v | |- V = ( Vtx ` G ) |
|
2 | upgrres1.e | |- E = ( Edg ` G ) |
|
3 | upgrres1.f | |- F = { e e. E | N e/ e } |
|
4 | 1 | fvexi | |- V e. _V |
5 | 4 | difexi | |- ( V \ { N } ) e. _V |
6 | 2 | fvexi | |- E e. _V |
7 | 3 6 | rabex2 | |- F e. _V |
8 | resiexg | |- ( F e. _V -> ( _I |` F ) e. _V ) |
|
9 | 7 8 | ax-mp | |- ( _I |` F ) e. _V |
10 | 5 9 | pm3.2i | |- ( ( V \ { N } ) e. _V /\ ( _I |` F ) e. _V ) |