Metamath Proof Explorer


Theorem upgrres1lem1

Description: Lemma 1 for upgrres1 . (Contributed by AV, 7-Nov-2020)

Ref Expression
Hypotheses upgrres1.v
|- V = ( Vtx ` G )
upgrres1.e
|- E = ( Edg ` G )
upgrres1.f
|- F = { e e. E | N e/ e }
Assertion upgrres1lem1
|- ( ( V \ { N } ) e. _V /\ ( _I |` F ) e. _V )

Proof

Step Hyp Ref Expression
1 upgrres1.v
 |-  V = ( Vtx ` G )
2 upgrres1.e
 |-  E = ( Edg ` G )
3 upgrres1.f
 |-  F = { e e. E | N e/ e }
4 1 fvexi
 |-  V e. _V
5 4 difexi
 |-  ( V \ { N } ) e. _V
6 2 fvexi
 |-  E e. _V
7 3 6 rabex2
 |-  F e. _V
8 resiexg
 |-  ( F e. _V -> ( _I |` F ) e. _V )
9 7 8 ax-mp
 |-  ( _I |` F ) e. _V
10 5 9 pm3.2i
 |-  ( ( V \ { N } ) e. _V /\ ( _I |` F ) e. _V )