Metamath Proof Explorer


Theorem upgrres1lem2

Description: Lemma 2 for upgrres1 . (Contributed by AV, 7-Nov-2020)

Ref Expression
Hypotheses upgrres1.v
|- V = ( Vtx ` G )
upgrres1.e
|- E = ( Edg ` G )
upgrres1.f
|- F = { e e. E | N e/ e }
upgrres1.s
|- S = <. ( V \ { N } ) , ( _I |` F ) >.
Assertion upgrres1lem2
|- ( Vtx ` S ) = ( V \ { N } )

Proof

Step Hyp Ref Expression
1 upgrres1.v
 |-  V = ( Vtx ` G )
2 upgrres1.e
 |-  E = ( Edg ` G )
3 upgrres1.f
 |-  F = { e e. E | N e/ e }
4 upgrres1.s
 |-  S = <. ( V \ { N } ) , ( _I |` F ) >.
5 4 fveq2i
 |-  ( Vtx ` S ) = ( Vtx ` <. ( V \ { N } ) , ( _I |` F ) >. )
6 1 2 3 upgrres1lem1
 |-  ( ( V \ { N } ) e. _V /\ ( _I |` F ) e. _V )
7 opvtxfv
 |-  ( ( ( V \ { N } ) e. _V /\ ( _I |` F ) e. _V ) -> ( Vtx ` <. ( V \ { N } ) , ( _I |` F ) >. ) = ( V \ { N } ) )
8 6 7 ax-mp
 |-  ( Vtx ` <. ( V \ { N } ) , ( _I |` F ) >. ) = ( V \ { N } )
9 5 8 eqtri
 |-  ( Vtx ` S ) = ( V \ { N } )