Metamath Proof Explorer


Theorem upgrspan

Description: A spanning subgraph S of a pseudograph G is a pseudograph. (Contributed by AV, 11-Oct-2020) (Proof shortened by AV, 18-Nov-2020)

Ref Expression
Hypotheses uhgrspan.v
|- V = ( Vtx ` G )
uhgrspan.e
|- E = ( iEdg ` G )
uhgrspan.s
|- ( ph -> S e. W )
uhgrspan.q
|- ( ph -> ( Vtx ` S ) = V )
uhgrspan.r
|- ( ph -> ( iEdg ` S ) = ( E |` A ) )
upgrspan.g
|- ( ph -> G e. UPGraph )
Assertion upgrspan
|- ( ph -> S e. UPGraph )

Proof

Step Hyp Ref Expression
1 uhgrspan.v
 |-  V = ( Vtx ` G )
2 uhgrspan.e
 |-  E = ( iEdg ` G )
3 uhgrspan.s
 |-  ( ph -> S e. W )
4 uhgrspan.q
 |-  ( ph -> ( Vtx ` S ) = V )
5 uhgrspan.r
 |-  ( ph -> ( iEdg ` S ) = ( E |` A ) )
6 upgrspan.g
 |-  ( ph -> G e. UPGraph )
7 upgruhgr
 |-  ( G e. UPGraph -> G e. UHGraph )
8 6 7 syl
 |-  ( ph -> G e. UHGraph )
9 1 2 3 4 5 8 uhgrspansubgr
 |-  ( ph -> S SubGraph G )
10 subupgr
 |-  ( ( G e. UPGraph /\ S SubGraph G ) -> S e. UPGraph )
11 6 9 10 syl2anc
 |-  ( ph -> S e. UPGraph )