| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isupgr.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | isupgr.e |  |-  E = ( iEdg ` G ) | 
						
							| 3 |  | ssrab2 |  |-  { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } C_ ( ~P V \ { (/) } ) | 
						
							| 4 |  | difss |  |-  ( ~P V \ { (/) } ) C_ ~P V | 
						
							| 5 | 3 4 | sstri |  |-  { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } C_ ~P V | 
						
							| 6 | 1 2 | upgrf |  |-  ( G e. UPGraph -> E : dom E --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 7 | 6 | ffvelcdmda |  |-  ( ( G e. UPGraph /\ F e. dom E ) -> ( E ` F ) e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) | 
						
							| 8 | 5 7 | sselid |  |-  ( ( G e. UPGraph /\ F e. dom E ) -> ( E ` F ) e. ~P V ) | 
						
							| 9 | 8 | elpwid |  |-  ( ( G e. UPGraph /\ F e. dom E ) -> ( E ` F ) C_ V ) |