Step |
Hyp |
Ref |
Expression |
1 |
|
isupgr.v |
|- V = ( Vtx ` G ) |
2 |
|
isupgr.e |
|- E = ( iEdg ` G ) |
3 |
|
ssrab2 |
|- { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } C_ ( ~P V \ { (/) } ) |
4 |
|
difss |
|- ( ~P V \ { (/) } ) C_ ~P V |
5 |
3 4
|
sstri |
|- { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } C_ ~P V |
6 |
1 2
|
upgrf |
|- ( G e. UPGraph -> E : dom E --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
7 |
6
|
ffvelrnda |
|- ( ( G e. UPGraph /\ F e. dom E ) -> ( E ` F ) e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
8 |
5 7
|
sselid |
|- ( ( G e. UPGraph /\ F e. dom E ) -> ( E ` F ) e. ~P V ) |
9 |
8
|
elpwid |
|- ( ( G e. UPGraph /\ F e. dom E ) -> ( E ` F ) C_ V ) |