Metamath Proof Explorer


Theorem upgrss

Description: An edge is a subset of vertices. (Contributed by Mario Carneiro, 11-Mar-2015) (Revised by AV, 29-Nov-2020)

Ref Expression
Hypotheses isupgr.v
|- V = ( Vtx ` G )
isupgr.e
|- E = ( iEdg ` G )
Assertion upgrss
|- ( ( G e. UPGraph /\ F e. dom E ) -> ( E ` F ) C_ V )

Proof

Step Hyp Ref Expression
1 isupgr.v
 |-  V = ( Vtx ` G )
2 isupgr.e
 |-  E = ( iEdg ` G )
3 ssrab2
 |-  { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } C_ ( ~P V \ { (/) } )
4 difss
 |-  ( ~P V \ { (/) } ) C_ ~P V
5 3 4 sstri
 |-  { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } C_ ~P V
6 1 2 upgrf
 |-  ( G e. UPGraph -> E : dom E --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } )
7 6 ffvelrnda
 |-  ( ( G e. UPGraph /\ F e. dom E ) -> ( E ` F ) e. { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } )
8 5 7 sselid
 |-  ( ( G e. UPGraph /\ F e. dom E ) -> ( E ` F ) e. ~P V )
9 8 elpwid
 |-  ( ( G e. UPGraph /\ F e. dom E ) -> ( E ` F ) C_ V )