Step |
Hyp |
Ref |
Expression |
1 |
|
upgrun.g |
|- ( ph -> G e. UPGraph ) |
2 |
|
upgrun.h |
|- ( ph -> H e. UPGraph ) |
3 |
|
upgrun.e |
|- E = ( iEdg ` G ) |
4 |
|
upgrun.f |
|- F = ( iEdg ` H ) |
5 |
|
upgrun.vg |
|- V = ( Vtx ` G ) |
6 |
|
upgrun.vh |
|- ( ph -> ( Vtx ` H ) = V ) |
7 |
|
upgrun.i |
|- ( ph -> ( dom E i^i dom F ) = (/) ) |
8 |
|
upgrun.u |
|- ( ph -> U e. W ) |
9 |
|
upgrun.v |
|- ( ph -> ( Vtx ` U ) = V ) |
10 |
|
upgrun.un |
|- ( ph -> ( iEdg ` U ) = ( E u. F ) ) |
11 |
5 3
|
upgrf |
|- ( G e. UPGraph -> E : dom E --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
12 |
1 11
|
syl |
|- ( ph -> E : dom E --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
13 |
|
eqid |
|- ( Vtx ` H ) = ( Vtx ` H ) |
14 |
13 4
|
upgrf |
|- ( H e. UPGraph -> F : dom F --> { x e. ( ~P ( Vtx ` H ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
15 |
2 14
|
syl |
|- ( ph -> F : dom F --> { x e. ( ~P ( Vtx ` H ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
16 |
6
|
eqcomd |
|- ( ph -> V = ( Vtx ` H ) ) |
17 |
16
|
pweqd |
|- ( ph -> ~P V = ~P ( Vtx ` H ) ) |
18 |
17
|
difeq1d |
|- ( ph -> ( ~P V \ { (/) } ) = ( ~P ( Vtx ` H ) \ { (/) } ) ) |
19 |
18
|
rabeqdv |
|- ( ph -> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } = { x e. ( ~P ( Vtx ` H ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
20 |
19
|
feq3d |
|- ( ph -> ( F : dom F --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } <-> F : dom F --> { x e. ( ~P ( Vtx ` H ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
21 |
15 20
|
mpbird |
|- ( ph -> F : dom F --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
22 |
12 21 7
|
fun2d |
|- ( ph -> ( E u. F ) : ( dom E u. dom F ) --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
23 |
10
|
dmeqd |
|- ( ph -> dom ( iEdg ` U ) = dom ( E u. F ) ) |
24 |
|
dmun |
|- dom ( E u. F ) = ( dom E u. dom F ) |
25 |
23 24
|
eqtrdi |
|- ( ph -> dom ( iEdg ` U ) = ( dom E u. dom F ) ) |
26 |
9
|
pweqd |
|- ( ph -> ~P ( Vtx ` U ) = ~P V ) |
27 |
26
|
difeq1d |
|- ( ph -> ( ~P ( Vtx ` U ) \ { (/) } ) = ( ~P V \ { (/) } ) ) |
28 |
27
|
rabeqdv |
|- ( ph -> { x e. ( ~P ( Vtx ` U ) \ { (/) } ) | ( # ` x ) <_ 2 } = { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) |
29 |
10 25 28
|
feq123d |
|- ( ph -> ( ( iEdg ` U ) : dom ( iEdg ` U ) --> { x e. ( ~P ( Vtx ` U ) \ { (/) } ) | ( # ` x ) <_ 2 } <-> ( E u. F ) : ( dom E u. dom F ) --> { x e. ( ~P V \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
30 |
22 29
|
mpbird |
|- ( ph -> ( iEdg ` U ) : dom ( iEdg ` U ) --> { x e. ( ~P ( Vtx ` U ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
31 |
|
eqid |
|- ( Vtx ` U ) = ( Vtx ` U ) |
32 |
|
eqid |
|- ( iEdg ` U ) = ( iEdg ` U ) |
33 |
31 32
|
isupgr |
|- ( U e. W -> ( U e. UPGraph <-> ( iEdg ` U ) : dom ( iEdg ` U ) --> { x e. ( ~P ( Vtx ` U ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
34 |
8 33
|
syl |
|- ( ph -> ( U e. UPGraph <-> ( iEdg ` U ) : dom ( iEdg ` U ) --> { x e. ( ~P ( Vtx ` U ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
35 |
30 34
|
mpbird |
|- ( ph -> U e. UPGraph ) |