| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upgrun.g |  |-  ( ph -> G e. UPGraph ) | 
						
							| 2 |  | upgrun.h |  |-  ( ph -> H e. UPGraph ) | 
						
							| 3 |  | upgrun.e |  |-  E = ( iEdg ` G ) | 
						
							| 4 |  | upgrun.f |  |-  F = ( iEdg ` H ) | 
						
							| 5 |  | upgrun.vg |  |-  V = ( Vtx ` G ) | 
						
							| 6 |  | upgrun.vh |  |-  ( ph -> ( Vtx ` H ) = V ) | 
						
							| 7 |  | upgrun.i |  |-  ( ph -> ( dom E i^i dom F ) = (/) ) | 
						
							| 8 |  | opex |  |-  <. V , ( E u. F ) >. e. _V | 
						
							| 9 | 8 | a1i |  |-  ( ph -> <. V , ( E u. F ) >. e. _V ) | 
						
							| 10 | 5 | fvexi |  |-  V e. _V | 
						
							| 11 | 3 | fvexi |  |-  E e. _V | 
						
							| 12 | 4 | fvexi |  |-  F e. _V | 
						
							| 13 | 11 12 | unex |  |-  ( E u. F ) e. _V | 
						
							| 14 | 10 13 | pm3.2i |  |-  ( V e. _V /\ ( E u. F ) e. _V ) | 
						
							| 15 |  | opvtxfv |  |-  ( ( V e. _V /\ ( E u. F ) e. _V ) -> ( Vtx ` <. V , ( E u. F ) >. ) = V ) | 
						
							| 16 | 14 15 | mp1i |  |-  ( ph -> ( Vtx ` <. V , ( E u. F ) >. ) = V ) | 
						
							| 17 |  | opiedgfv |  |-  ( ( V e. _V /\ ( E u. F ) e. _V ) -> ( iEdg ` <. V , ( E u. F ) >. ) = ( E u. F ) ) | 
						
							| 18 | 14 17 | mp1i |  |-  ( ph -> ( iEdg ` <. V , ( E u. F ) >. ) = ( E u. F ) ) | 
						
							| 19 | 1 2 3 4 5 6 7 9 16 18 | upgrun |  |-  ( ph -> <. V , ( E u. F ) >. e. UPGraph ) |