Metamath Proof Explorer


Theorem upgrunop

Description: The union of two pseudographs (with the same vertex set): If <. V , E >. and <. V , F >. are pseudographs, then <. V , E u. F >. is a pseudograph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 12-Oct-2020) (Revised by AV, 24-Oct-2021)

Ref Expression
Hypotheses upgrun.g
|- ( ph -> G e. UPGraph )
upgrun.h
|- ( ph -> H e. UPGraph )
upgrun.e
|- E = ( iEdg ` G )
upgrun.f
|- F = ( iEdg ` H )
upgrun.vg
|- V = ( Vtx ` G )
upgrun.vh
|- ( ph -> ( Vtx ` H ) = V )
upgrun.i
|- ( ph -> ( dom E i^i dom F ) = (/) )
Assertion upgrunop
|- ( ph -> <. V , ( E u. F ) >. e. UPGraph )

Proof

Step Hyp Ref Expression
1 upgrun.g
 |-  ( ph -> G e. UPGraph )
2 upgrun.h
 |-  ( ph -> H e. UPGraph )
3 upgrun.e
 |-  E = ( iEdg ` G )
4 upgrun.f
 |-  F = ( iEdg ` H )
5 upgrun.vg
 |-  V = ( Vtx ` G )
6 upgrun.vh
 |-  ( ph -> ( Vtx ` H ) = V )
7 upgrun.i
 |-  ( ph -> ( dom E i^i dom F ) = (/) )
8 opex
 |-  <. V , ( E u. F ) >. e. _V
9 8 a1i
 |-  ( ph -> <. V , ( E u. F ) >. e. _V )
10 5 fvexi
 |-  V e. _V
11 3 fvexi
 |-  E e. _V
12 4 fvexi
 |-  F e. _V
13 11 12 unex
 |-  ( E u. F ) e. _V
14 10 13 pm3.2i
 |-  ( V e. _V /\ ( E u. F ) e. _V )
15 opvtxfv
 |-  ( ( V e. _V /\ ( E u. F ) e. _V ) -> ( Vtx ` <. V , ( E u. F ) >. ) = V )
16 14 15 mp1i
 |-  ( ph -> ( Vtx ` <. V , ( E u. F ) >. ) = V )
17 opiedgfv
 |-  ( ( V e. _V /\ ( E u. F ) e. _V ) -> ( iEdg ` <. V , ( E u. F ) >. ) = ( E u. F ) )
18 14 17 mp1i
 |-  ( ph -> ( iEdg ` <. V , ( E u. F ) >. ) = ( E u. F ) )
19 1 2 3 4 5 6 7 9 16 18 upgrun
 |-  ( ph -> <. V , ( E u. F ) >. e. UPGraph )