Step |
Hyp |
Ref |
Expression |
1 |
|
upgrwlkcompim.v |
|- V = ( Vtx ` G ) |
2 |
|
upgrwlkcompim.i |
|- I = ( iEdg ` G ) |
3 |
|
upgrwlkcompim.1 |
|- F = ( 1st ` W ) |
4 |
|
upgrwlkcompim.2 |
|- P = ( 2nd ` W ) |
5 |
|
wlkcpr |
|- ( W e. ( Walks ` G ) <-> ( 1st ` W ) ( Walks ` G ) ( 2nd ` W ) ) |
6 |
3 4
|
breq12i |
|- ( F ( Walks ` G ) P <-> ( 1st ` W ) ( Walks ` G ) ( 2nd ` W ) ) |
7 |
5 6
|
bitr4i |
|- ( W e. ( Walks ` G ) <-> F ( Walks ` G ) P ) |
8 |
1 2
|
upgriswlk |
|- ( G e. UPGraph -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
9 |
8
|
biimpd |
|- ( G e. UPGraph -> ( F ( Walks ` G ) P -> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
10 |
7 9
|
syl5bi |
|- ( G e. UPGraph -> ( W e. ( Walks ` G ) -> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
11 |
10
|
imp |
|- ( ( G e. UPGraph /\ W e. ( Walks ` G ) ) -> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |