Step |
Hyp |
Ref |
Expression |
1 |
|
3simpc |
|- ( ( G e. UPGraph /\ F ( Walks ` G ) P /\ Fun `' P ) -> ( F ( Walks ` G ) P /\ Fun `' P ) ) |
2 |
|
upgrspthswlk |
|- ( G e. UPGraph -> ( SPaths ` G ) = { <. f , p >. | ( f ( Walks ` G ) p /\ Fun `' p ) } ) |
3 |
2
|
3ad2ant1 |
|- ( ( G e. UPGraph /\ F ( Walks ` G ) P /\ Fun `' P ) -> ( SPaths ` G ) = { <. f , p >. | ( f ( Walks ` G ) p /\ Fun `' p ) } ) |
4 |
3
|
breqd |
|- ( ( G e. UPGraph /\ F ( Walks ` G ) P /\ Fun `' P ) -> ( F ( SPaths ` G ) P <-> F { <. f , p >. | ( f ( Walks ` G ) p /\ Fun `' p ) } P ) ) |
5 |
|
wlkv |
|- ( F ( Walks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) |
6 |
|
3simpc |
|- ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( F e. _V /\ P e. _V ) ) |
7 |
5 6
|
syl |
|- ( F ( Walks ` G ) P -> ( F e. _V /\ P e. _V ) ) |
8 |
7
|
3ad2ant2 |
|- ( ( G e. UPGraph /\ F ( Walks ` G ) P /\ Fun `' P ) -> ( F e. _V /\ P e. _V ) ) |
9 |
|
breq12 |
|- ( ( f = F /\ p = P ) -> ( f ( Walks ` G ) p <-> F ( Walks ` G ) P ) ) |
10 |
|
cnveq |
|- ( p = P -> `' p = `' P ) |
11 |
10
|
funeqd |
|- ( p = P -> ( Fun `' p <-> Fun `' P ) ) |
12 |
11
|
adantl |
|- ( ( f = F /\ p = P ) -> ( Fun `' p <-> Fun `' P ) ) |
13 |
9 12
|
anbi12d |
|- ( ( f = F /\ p = P ) -> ( ( f ( Walks ` G ) p /\ Fun `' p ) <-> ( F ( Walks ` G ) P /\ Fun `' P ) ) ) |
14 |
|
eqid |
|- { <. f , p >. | ( f ( Walks ` G ) p /\ Fun `' p ) } = { <. f , p >. | ( f ( Walks ` G ) p /\ Fun `' p ) } |
15 |
13 14
|
brabga |
|- ( ( F e. _V /\ P e. _V ) -> ( F { <. f , p >. | ( f ( Walks ` G ) p /\ Fun `' p ) } P <-> ( F ( Walks ` G ) P /\ Fun `' P ) ) ) |
16 |
8 15
|
syl |
|- ( ( G e. UPGraph /\ F ( Walks ` G ) P /\ Fun `' P ) -> ( F { <. f , p >. | ( f ( Walks ` G ) p /\ Fun `' p ) } P <-> ( F ( Walks ` G ) P /\ Fun `' P ) ) ) |
17 |
4 16
|
bitrd |
|- ( ( G e. UPGraph /\ F ( Walks ` G ) P /\ Fun `' P ) -> ( F ( SPaths ` G ) P <-> ( F ( Walks ` G ) P /\ Fun `' P ) ) ) |
18 |
1 17
|
mpbird |
|- ( ( G e. UPGraph /\ F ( Walks ` G ) P /\ Fun `' P ) -> F ( SPaths ` G ) P ) |