| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wlkvtxedg.e |  |-  E = ( Edg ` G ) | 
						
							| 2 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 3 |  | eqid |  |-  ( iEdg ` G ) = ( iEdg ` G ) | 
						
							| 4 | 2 3 | upgriswlk |  |-  ( G e. UPGraph -> ( F ( Walks ` G ) P <-> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) | 
						
							| 5 | 3 1 | upgredginwlk |  |-  ( ( G e. UPGraph /\ F e. Word dom ( iEdg ` G ) ) -> ( k e. ( 0 ..^ ( # ` F ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) e. E ) ) | 
						
							| 6 | 5 | ancoms |  |-  ( ( F e. Word dom ( iEdg ` G ) /\ G e. UPGraph ) -> ( k e. ( 0 ..^ ( # ` F ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) e. E ) ) | 
						
							| 7 | 6 | imp |  |-  ( ( ( F e. Word dom ( iEdg ` G ) /\ G e. UPGraph ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) e. E ) | 
						
							| 8 |  | eleq1 |  |-  ( { ( P ` k ) , ( P ` ( k + 1 ) ) } = ( ( iEdg ` G ) ` ( F ` k ) ) -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E <-> ( ( iEdg ` G ) ` ( F ` k ) ) e. E ) ) | 
						
							| 9 | 8 | eqcoms |  |-  ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E <-> ( ( iEdg ` G ) ` ( F ` k ) ) e. E ) ) | 
						
							| 10 | 7 9 | syl5ibrcom |  |-  ( ( ( F e. Word dom ( iEdg ` G ) /\ G e. UPGraph ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) ) | 
						
							| 11 | 10 | ralimdva |  |-  ( ( F e. Word dom ( iEdg ` G ) /\ G e. UPGraph ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) ) | 
						
							| 12 | 11 | impancom |  |-  ( ( F e. Word dom ( iEdg ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> ( G e. UPGraph -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) ) | 
						
							| 13 | 12 | 3adant2 |  |-  ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> ( G e. UPGraph -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) ) | 
						
							| 14 | 13 | com12 |  |-  ( G e. UPGraph -> ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) ) | 
						
							| 15 | 4 14 | sylbid |  |-  ( G e. UPGraph -> ( F ( Walks ` G ) P -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) ) | 
						
							| 16 | 15 | imp |  |-  ( ( G e. UPGraph /\ F ( Walks ` G ) P ) -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) |