Step |
Hyp |
Ref |
Expression |
1 |
|
wlkvtxedg.e |
|- E = ( Edg ` G ) |
2 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
3 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
4 |
2 3
|
upgriswlk |
|- ( G e. UPGraph -> ( F ( Walks ` G ) P <-> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) ) |
5 |
3 1
|
upgredginwlk |
|- ( ( G e. UPGraph /\ F e. Word dom ( iEdg ` G ) ) -> ( k e. ( 0 ..^ ( # ` F ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) e. E ) ) |
6 |
5
|
ancoms |
|- ( ( F e. Word dom ( iEdg ` G ) /\ G e. UPGraph ) -> ( k e. ( 0 ..^ ( # ` F ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) e. E ) ) |
7 |
6
|
imp |
|- ( ( ( F e. Word dom ( iEdg ` G ) /\ G e. UPGraph ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( iEdg ` G ) ` ( F ` k ) ) e. E ) |
8 |
|
eleq1 |
|- ( { ( P ` k ) , ( P ` ( k + 1 ) ) } = ( ( iEdg ` G ) ` ( F ` k ) ) -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E <-> ( ( iEdg ` G ) ` ( F ` k ) ) e. E ) ) |
9 |
8
|
eqcoms |
|- ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> ( { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E <-> ( ( iEdg ` G ) ` ( F ` k ) ) e. E ) ) |
10 |
7 9
|
syl5ibrcom |
|- ( ( ( F e. Word dom ( iEdg ` G ) /\ G e. UPGraph ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) ) |
11 |
10
|
ralimdva |
|- ( ( F e. Word dom ( iEdg ` G ) /\ G e. UPGraph ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) ) |
12 |
11
|
impancom |
|- ( ( F e. Word dom ( iEdg ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> ( G e. UPGraph -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) ) |
13 |
12
|
3adant2 |
|- ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> ( G e. UPGraph -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) ) |
14 |
13
|
com12 |
|- ( G e. UPGraph -> ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) ) |
15 |
4 14
|
sylbid |
|- ( G e. UPGraph -> ( F ( Walks ` G ) P -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) ) |
16 |
15
|
imp |
|- ( ( G e. UPGraph /\ F ( Walks ` G ) P ) -> A. k e. ( 0 ..^ ( # ` F ) ) { ( P ` k ) , ( P ` ( k + 1 ) ) } e. E ) |