| Step | Hyp | Ref | Expression | 
						
							| 1 |  | upxp.1 |  |-  P = ( 1st |` ( B X. C ) ) | 
						
							| 2 |  | upxp.2 |  |-  Q = ( 2nd |` ( B X. C ) ) | 
						
							| 3 |  | mptexg |  |-  ( A e. D -> ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) e. _V ) | 
						
							| 4 |  | eueq |  |-  ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) e. _V <-> E! h h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) | 
						
							| 5 | 3 4 | sylib |  |-  ( A e. D -> E! h h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) | 
						
							| 6 | 5 | 3ad2ant1 |  |-  ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> E! h h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) | 
						
							| 7 |  | ffn |  |-  ( h : A --> ( B X. C ) -> h Fn A ) | 
						
							| 8 | 7 | 3ad2ant1 |  |-  ( ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) -> h Fn A ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) -> h Fn A ) | 
						
							| 10 |  | ffvelcdm |  |-  ( ( F : A --> B /\ x e. A ) -> ( F ` x ) e. B ) | 
						
							| 11 |  | ffvelcdm |  |-  ( ( G : A --> C /\ x e. A ) -> ( G ` x ) e. C ) | 
						
							| 12 |  | opelxpi |  |-  ( ( ( F ` x ) e. B /\ ( G ` x ) e. C ) -> <. ( F ` x ) , ( G ` x ) >. e. ( B X. C ) ) | 
						
							| 13 | 10 11 12 | syl2an |  |-  ( ( ( F : A --> B /\ x e. A ) /\ ( G : A --> C /\ x e. A ) ) -> <. ( F ` x ) , ( G ` x ) >. e. ( B X. C ) ) | 
						
							| 14 | 13 | anandirs |  |-  ( ( ( F : A --> B /\ G : A --> C ) /\ x e. A ) -> <. ( F ` x ) , ( G ` x ) >. e. ( B X. C ) ) | 
						
							| 15 | 14 | ralrimiva |  |-  ( ( F : A --> B /\ G : A --> C ) -> A. x e. A <. ( F ` x ) , ( G ` x ) >. e. ( B X. C ) ) | 
						
							| 16 | 15 | 3adant1 |  |-  ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> A. x e. A <. ( F ` x ) , ( G ` x ) >. e. ( B X. C ) ) | 
						
							| 17 |  | eqid |  |-  ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) | 
						
							| 18 | 17 | fmpt |  |-  ( A. x e. A <. ( F ` x ) , ( G ` x ) >. e. ( B X. C ) <-> ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) : A --> ( B X. C ) ) | 
						
							| 19 | 16 18 | sylib |  |-  ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) : A --> ( B X. C ) ) | 
						
							| 20 | 19 | ffnd |  |-  ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) Fn A ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) -> ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) Fn A ) | 
						
							| 22 |  | xpss |  |-  ( B X. C ) C_ ( _V X. _V ) | 
						
							| 23 |  | ffvelcdm |  |-  ( ( h : A --> ( B X. C ) /\ z e. A ) -> ( h ` z ) e. ( B X. C ) ) | 
						
							| 24 | 22 23 | sselid |  |-  ( ( h : A --> ( B X. C ) /\ z e. A ) -> ( h ` z ) e. ( _V X. _V ) ) | 
						
							| 25 | 24 | 3ad2antl1 |  |-  ( ( ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) /\ z e. A ) -> ( h ` z ) e. ( _V X. _V ) ) | 
						
							| 26 | 25 | adantll |  |-  ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( h ` z ) e. ( _V X. _V ) ) | 
						
							| 27 |  | fveq1 |  |-  ( F = ( P o. h ) -> ( F ` z ) = ( ( P o. h ) ` z ) ) | 
						
							| 28 | 1 | coeq1i |  |-  ( P o. h ) = ( ( 1st |` ( B X. C ) ) o. h ) | 
						
							| 29 | 28 | fveq1i |  |-  ( ( P o. h ) ` z ) = ( ( ( 1st |` ( B X. C ) ) o. h ) ` z ) | 
						
							| 30 | 27 29 | eqtrdi |  |-  ( F = ( P o. h ) -> ( F ` z ) = ( ( ( 1st |` ( B X. C ) ) o. h ) ` z ) ) | 
						
							| 31 | 30 | 3ad2ant2 |  |-  ( ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) -> ( F ` z ) = ( ( ( 1st |` ( B X. C ) ) o. h ) ` z ) ) | 
						
							| 32 | 31 | ad2antlr |  |-  ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( F ` z ) = ( ( ( 1st |` ( B X. C ) ) o. h ) ` z ) ) | 
						
							| 33 |  | simpr1 |  |-  ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) -> h : A --> ( B X. C ) ) | 
						
							| 34 |  | fvco3 |  |-  ( ( h : A --> ( B X. C ) /\ z e. A ) -> ( ( ( 1st |` ( B X. C ) ) o. h ) ` z ) = ( ( 1st |` ( B X. C ) ) ` ( h ` z ) ) ) | 
						
							| 35 | 33 34 | sylan |  |-  ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( ( ( 1st |` ( B X. C ) ) o. h ) ` z ) = ( ( 1st |` ( B X. C ) ) ` ( h ` z ) ) ) | 
						
							| 36 | 23 | 3ad2antl1 |  |-  ( ( ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) /\ z e. A ) -> ( h ` z ) e. ( B X. C ) ) | 
						
							| 37 | 36 | adantll |  |-  ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( h ` z ) e. ( B X. C ) ) | 
						
							| 38 | 37 | fvresd |  |-  ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( ( 1st |` ( B X. C ) ) ` ( h ` z ) ) = ( 1st ` ( h ` z ) ) ) | 
						
							| 39 | 32 35 38 | 3eqtrrd |  |-  ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( 1st ` ( h ` z ) ) = ( F ` z ) ) | 
						
							| 40 |  | fveq1 |  |-  ( G = ( Q o. h ) -> ( G ` z ) = ( ( Q o. h ) ` z ) ) | 
						
							| 41 | 2 | coeq1i |  |-  ( Q o. h ) = ( ( 2nd |` ( B X. C ) ) o. h ) | 
						
							| 42 | 41 | fveq1i |  |-  ( ( Q o. h ) ` z ) = ( ( ( 2nd |` ( B X. C ) ) o. h ) ` z ) | 
						
							| 43 | 40 42 | eqtrdi |  |-  ( G = ( Q o. h ) -> ( G ` z ) = ( ( ( 2nd |` ( B X. C ) ) o. h ) ` z ) ) | 
						
							| 44 | 43 | 3ad2ant3 |  |-  ( ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) -> ( G ` z ) = ( ( ( 2nd |` ( B X. C ) ) o. h ) ` z ) ) | 
						
							| 45 | 44 | ad2antlr |  |-  ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( G ` z ) = ( ( ( 2nd |` ( B X. C ) ) o. h ) ` z ) ) | 
						
							| 46 |  | fvco3 |  |-  ( ( h : A --> ( B X. C ) /\ z e. A ) -> ( ( ( 2nd |` ( B X. C ) ) o. h ) ` z ) = ( ( 2nd |` ( B X. C ) ) ` ( h ` z ) ) ) | 
						
							| 47 | 33 46 | sylan |  |-  ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( ( ( 2nd |` ( B X. C ) ) o. h ) ` z ) = ( ( 2nd |` ( B X. C ) ) ` ( h ` z ) ) ) | 
						
							| 48 | 37 | fvresd |  |-  ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( ( 2nd |` ( B X. C ) ) ` ( h ` z ) ) = ( 2nd ` ( h ` z ) ) ) | 
						
							| 49 | 45 47 48 | 3eqtrrd |  |-  ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( 2nd ` ( h ` z ) ) = ( G ` z ) ) | 
						
							| 50 |  | eqopi |  |-  ( ( ( h ` z ) e. ( _V X. _V ) /\ ( ( 1st ` ( h ` z ) ) = ( F ` z ) /\ ( 2nd ` ( h ` z ) ) = ( G ` z ) ) ) -> ( h ` z ) = <. ( F ` z ) , ( G ` z ) >. ) | 
						
							| 51 | 26 39 49 50 | syl12anc |  |-  ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( h ` z ) = <. ( F ` z ) , ( G ` z ) >. ) | 
						
							| 52 |  | fveq2 |  |-  ( x = z -> ( F ` x ) = ( F ` z ) ) | 
						
							| 53 |  | fveq2 |  |-  ( x = z -> ( G ` x ) = ( G ` z ) ) | 
						
							| 54 | 52 53 | opeq12d |  |-  ( x = z -> <. ( F ` x ) , ( G ` x ) >. = <. ( F ` z ) , ( G ` z ) >. ) | 
						
							| 55 |  | opex |  |-  <. ( F ` z ) , ( G ` z ) >. e. _V | 
						
							| 56 | 54 17 55 | fvmpt |  |-  ( z e. A -> ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` z ) = <. ( F ` z ) , ( G ` z ) >. ) | 
						
							| 57 | 56 | adantl |  |-  ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` z ) = <. ( F ` z ) , ( G ` z ) >. ) | 
						
							| 58 | 51 57 | eqtr4d |  |-  ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( h ` z ) = ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` z ) ) | 
						
							| 59 | 9 21 58 | eqfnfvd |  |-  ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) -> h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) | 
						
							| 60 | 59 | ex |  |-  ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> ( ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) -> h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) | 
						
							| 61 |  | ffn |  |-  ( F : A --> B -> F Fn A ) | 
						
							| 62 | 61 | 3ad2ant2 |  |-  ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> F Fn A ) | 
						
							| 63 |  | fo1st |  |-  1st : _V -onto-> _V | 
						
							| 64 |  | fofn |  |-  ( 1st : _V -onto-> _V -> 1st Fn _V ) | 
						
							| 65 | 63 64 | ax-mp |  |-  1st Fn _V | 
						
							| 66 |  | ssv |  |-  ( B X. C ) C_ _V | 
						
							| 67 |  | fnssres |  |-  ( ( 1st Fn _V /\ ( B X. C ) C_ _V ) -> ( 1st |` ( B X. C ) ) Fn ( B X. C ) ) | 
						
							| 68 | 65 66 67 | mp2an |  |-  ( 1st |` ( B X. C ) ) Fn ( B X. C ) | 
						
							| 69 | 19 | frnd |  |-  ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> ran ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) C_ ( B X. C ) ) | 
						
							| 70 |  | fnco |  |-  ( ( ( 1st |` ( B X. C ) ) Fn ( B X. C ) /\ ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) Fn A /\ ran ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) C_ ( B X. C ) ) -> ( ( 1st |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) Fn A ) | 
						
							| 71 | 68 20 69 70 | mp3an2i |  |-  ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> ( ( 1st |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) Fn A ) | 
						
							| 72 |  | fvco3 |  |-  ( ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) : A --> ( B X. C ) /\ z e. A ) -> ( ( ( 1st |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ` z ) = ( ( 1st |` ( B X. C ) ) ` ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` z ) ) ) | 
						
							| 73 | 19 72 | sylan |  |-  ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( ( ( 1st |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ` z ) = ( ( 1st |` ( B X. C ) ) ` ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` z ) ) ) | 
						
							| 74 | 56 | adantl |  |-  ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` z ) = <. ( F ` z ) , ( G ` z ) >. ) | 
						
							| 75 | 74 | fveq2d |  |-  ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( ( 1st |` ( B X. C ) ) ` ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` z ) ) = ( ( 1st |` ( B X. C ) ) ` <. ( F ` z ) , ( G ` z ) >. ) ) | 
						
							| 76 |  | ffvelcdm |  |-  ( ( F : A --> B /\ z e. A ) -> ( F ` z ) e. B ) | 
						
							| 77 |  | ffvelcdm |  |-  ( ( G : A --> C /\ z e. A ) -> ( G ` z ) e. C ) | 
						
							| 78 |  | opelxpi |  |-  ( ( ( F ` z ) e. B /\ ( G ` z ) e. C ) -> <. ( F ` z ) , ( G ` z ) >. e. ( B X. C ) ) | 
						
							| 79 | 76 77 78 | syl2an |  |-  ( ( ( F : A --> B /\ z e. A ) /\ ( G : A --> C /\ z e. A ) ) -> <. ( F ` z ) , ( G ` z ) >. e. ( B X. C ) ) | 
						
							| 80 | 79 | anandirs |  |-  ( ( ( F : A --> B /\ G : A --> C ) /\ z e. A ) -> <. ( F ` z ) , ( G ` z ) >. e. ( B X. C ) ) | 
						
							| 81 | 80 | 3adantl1 |  |-  ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> <. ( F ` z ) , ( G ` z ) >. e. ( B X. C ) ) | 
						
							| 82 | 81 | fvresd |  |-  ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( ( 1st |` ( B X. C ) ) ` <. ( F ` z ) , ( G ` z ) >. ) = ( 1st ` <. ( F ` z ) , ( G ` z ) >. ) ) | 
						
							| 83 |  | fvex |  |-  ( F ` z ) e. _V | 
						
							| 84 |  | fvex |  |-  ( G ` z ) e. _V | 
						
							| 85 | 83 84 | op1st |  |-  ( 1st ` <. ( F ` z ) , ( G ` z ) >. ) = ( F ` z ) | 
						
							| 86 | 82 85 | eqtrdi |  |-  ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( ( 1st |` ( B X. C ) ) ` <. ( F ` z ) , ( G ` z ) >. ) = ( F ` z ) ) | 
						
							| 87 | 73 75 86 | 3eqtrrd |  |-  ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( F ` z ) = ( ( ( 1st |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ` z ) ) | 
						
							| 88 | 62 71 87 | eqfnfvd |  |-  ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> F = ( ( 1st |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) | 
						
							| 89 | 1 | coeq1i |  |-  ( P o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) = ( ( 1st |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) | 
						
							| 90 | 88 89 | eqtr4di |  |-  ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> F = ( P o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) | 
						
							| 91 |  | ffn |  |-  ( G : A --> C -> G Fn A ) | 
						
							| 92 | 91 | 3ad2ant3 |  |-  ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> G Fn A ) | 
						
							| 93 |  | fo2nd |  |-  2nd : _V -onto-> _V | 
						
							| 94 |  | fofn |  |-  ( 2nd : _V -onto-> _V -> 2nd Fn _V ) | 
						
							| 95 | 93 94 | ax-mp |  |-  2nd Fn _V | 
						
							| 96 |  | fnssres |  |-  ( ( 2nd Fn _V /\ ( B X. C ) C_ _V ) -> ( 2nd |` ( B X. C ) ) Fn ( B X. C ) ) | 
						
							| 97 | 95 66 96 | mp2an |  |-  ( 2nd |` ( B X. C ) ) Fn ( B X. C ) | 
						
							| 98 |  | fnco |  |-  ( ( ( 2nd |` ( B X. C ) ) Fn ( B X. C ) /\ ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) Fn A /\ ran ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) C_ ( B X. C ) ) -> ( ( 2nd |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) Fn A ) | 
						
							| 99 | 97 20 69 98 | mp3an2i |  |-  ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> ( ( 2nd |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) Fn A ) | 
						
							| 100 |  | fvco3 |  |-  ( ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) : A --> ( B X. C ) /\ z e. A ) -> ( ( ( 2nd |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ` z ) = ( ( 2nd |` ( B X. C ) ) ` ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` z ) ) ) | 
						
							| 101 | 19 100 | sylan |  |-  ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( ( ( 2nd |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ` z ) = ( ( 2nd |` ( B X. C ) ) ` ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` z ) ) ) | 
						
							| 102 | 74 | fveq2d |  |-  ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( ( 2nd |` ( B X. C ) ) ` ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` z ) ) = ( ( 2nd |` ( B X. C ) ) ` <. ( F ` z ) , ( G ` z ) >. ) ) | 
						
							| 103 | 81 | fvresd |  |-  ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( ( 2nd |` ( B X. C ) ) ` <. ( F ` z ) , ( G ` z ) >. ) = ( 2nd ` <. ( F ` z ) , ( G ` z ) >. ) ) | 
						
							| 104 | 83 84 | op2nd |  |-  ( 2nd ` <. ( F ` z ) , ( G ` z ) >. ) = ( G ` z ) | 
						
							| 105 | 103 104 | eqtrdi |  |-  ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( ( 2nd |` ( B X. C ) ) ` <. ( F ` z ) , ( G ` z ) >. ) = ( G ` z ) ) | 
						
							| 106 | 101 102 105 | 3eqtrrd |  |-  ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( G ` z ) = ( ( ( 2nd |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ` z ) ) | 
						
							| 107 | 92 99 106 | eqfnfvd |  |-  ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> G = ( ( 2nd |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) | 
						
							| 108 | 2 | coeq1i |  |-  ( Q o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) = ( ( 2nd |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) | 
						
							| 109 | 107 108 | eqtr4di |  |-  ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> G = ( Q o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) | 
						
							| 110 | 19 90 109 | 3jca |  |-  ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) : A --> ( B X. C ) /\ F = ( P o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) /\ G = ( Q o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) ) | 
						
							| 111 |  | feq1 |  |-  ( h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) -> ( h : A --> ( B X. C ) <-> ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) : A --> ( B X. C ) ) ) | 
						
							| 112 |  | coeq2 |  |-  ( h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) -> ( P o. h ) = ( P o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) | 
						
							| 113 | 112 | eqeq2d |  |-  ( h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) -> ( F = ( P o. h ) <-> F = ( P o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) ) | 
						
							| 114 |  | coeq2 |  |-  ( h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) -> ( Q o. h ) = ( Q o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) | 
						
							| 115 | 114 | eqeq2d |  |-  ( h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) -> ( G = ( Q o. h ) <-> G = ( Q o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) ) | 
						
							| 116 | 111 113 115 | 3anbi123d |  |-  ( h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) -> ( ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) <-> ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) : A --> ( B X. C ) /\ F = ( P o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) /\ G = ( Q o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) ) ) | 
						
							| 117 | 110 116 | syl5ibrcom |  |-  ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> ( h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) -> ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) ) | 
						
							| 118 | 60 117 | impbid |  |-  ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> ( ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) <-> h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) | 
						
							| 119 | 118 | eubidv |  |-  ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> ( E! h ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) <-> E! h h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) | 
						
							| 120 | 6 119 | mpbird |  |-  ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> E! h ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) |