Step |
Hyp |
Ref |
Expression |
1 |
|
upxp.1 |
|- P = ( 1st |` ( B X. C ) ) |
2 |
|
upxp.2 |
|- Q = ( 2nd |` ( B X. C ) ) |
3 |
|
mptexg |
|- ( A e. D -> ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) e. _V ) |
4 |
|
eueq |
|- ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) e. _V <-> E! h h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) |
5 |
3 4
|
sylib |
|- ( A e. D -> E! h h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) |
6 |
5
|
3ad2ant1 |
|- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> E! h h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) |
7 |
|
ffn |
|- ( h : A --> ( B X. C ) -> h Fn A ) |
8 |
7
|
3ad2ant1 |
|- ( ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) -> h Fn A ) |
9 |
8
|
adantl |
|- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) -> h Fn A ) |
10 |
|
ffvelrn |
|- ( ( F : A --> B /\ x e. A ) -> ( F ` x ) e. B ) |
11 |
|
ffvelrn |
|- ( ( G : A --> C /\ x e. A ) -> ( G ` x ) e. C ) |
12 |
|
opelxpi |
|- ( ( ( F ` x ) e. B /\ ( G ` x ) e. C ) -> <. ( F ` x ) , ( G ` x ) >. e. ( B X. C ) ) |
13 |
10 11 12
|
syl2an |
|- ( ( ( F : A --> B /\ x e. A ) /\ ( G : A --> C /\ x e. A ) ) -> <. ( F ` x ) , ( G ` x ) >. e. ( B X. C ) ) |
14 |
13
|
anandirs |
|- ( ( ( F : A --> B /\ G : A --> C ) /\ x e. A ) -> <. ( F ` x ) , ( G ` x ) >. e. ( B X. C ) ) |
15 |
14
|
ralrimiva |
|- ( ( F : A --> B /\ G : A --> C ) -> A. x e. A <. ( F ` x ) , ( G ` x ) >. e. ( B X. C ) ) |
16 |
15
|
3adant1 |
|- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> A. x e. A <. ( F ` x ) , ( G ` x ) >. e. ( B X. C ) ) |
17 |
|
eqid |
|- ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) |
18 |
17
|
fmpt |
|- ( A. x e. A <. ( F ` x ) , ( G ` x ) >. e. ( B X. C ) <-> ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) : A --> ( B X. C ) ) |
19 |
16 18
|
sylib |
|- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) : A --> ( B X. C ) ) |
20 |
19
|
ffnd |
|- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) Fn A ) |
21 |
20
|
adantr |
|- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) -> ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) Fn A ) |
22 |
|
xpss |
|- ( B X. C ) C_ ( _V X. _V ) |
23 |
|
ffvelrn |
|- ( ( h : A --> ( B X. C ) /\ z e. A ) -> ( h ` z ) e. ( B X. C ) ) |
24 |
22 23
|
sselid |
|- ( ( h : A --> ( B X. C ) /\ z e. A ) -> ( h ` z ) e. ( _V X. _V ) ) |
25 |
24
|
3ad2antl1 |
|- ( ( ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) /\ z e. A ) -> ( h ` z ) e. ( _V X. _V ) ) |
26 |
25
|
adantll |
|- ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( h ` z ) e. ( _V X. _V ) ) |
27 |
|
fveq1 |
|- ( F = ( P o. h ) -> ( F ` z ) = ( ( P o. h ) ` z ) ) |
28 |
1
|
coeq1i |
|- ( P o. h ) = ( ( 1st |` ( B X. C ) ) o. h ) |
29 |
28
|
fveq1i |
|- ( ( P o. h ) ` z ) = ( ( ( 1st |` ( B X. C ) ) o. h ) ` z ) |
30 |
27 29
|
eqtrdi |
|- ( F = ( P o. h ) -> ( F ` z ) = ( ( ( 1st |` ( B X. C ) ) o. h ) ` z ) ) |
31 |
30
|
3ad2ant2 |
|- ( ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) -> ( F ` z ) = ( ( ( 1st |` ( B X. C ) ) o. h ) ` z ) ) |
32 |
31
|
ad2antlr |
|- ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( F ` z ) = ( ( ( 1st |` ( B X. C ) ) o. h ) ` z ) ) |
33 |
|
simpr1 |
|- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) -> h : A --> ( B X. C ) ) |
34 |
|
fvco3 |
|- ( ( h : A --> ( B X. C ) /\ z e. A ) -> ( ( ( 1st |` ( B X. C ) ) o. h ) ` z ) = ( ( 1st |` ( B X. C ) ) ` ( h ` z ) ) ) |
35 |
33 34
|
sylan |
|- ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( ( ( 1st |` ( B X. C ) ) o. h ) ` z ) = ( ( 1st |` ( B X. C ) ) ` ( h ` z ) ) ) |
36 |
23
|
3ad2antl1 |
|- ( ( ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) /\ z e. A ) -> ( h ` z ) e. ( B X. C ) ) |
37 |
36
|
adantll |
|- ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( h ` z ) e. ( B X. C ) ) |
38 |
37
|
fvresd |
|- ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( ( 1st |` ( B X. C ) ) ` ( h ` z ) ) = ( 1st ` ( h ` z ) ) ) |
39 |
32 35 38
|
3eqtrrd |
|- ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( 1st ` ( h ` z ) ) = ( F ` z ) ) |
40 |
|
fveq1 |
|- ( G = ( Q o. h ) -> ( G ` z ) = ( ( Q o. h ) ` z ) ) |
41 |
2
|
coeq1i |
|- ( Q o. h ) = ( ( 2nd |` ( B X. C ) ) o. h ) |
42 |
41
|
fveq1i |
|- ( ( Q o. h ) ` z ) = ( ( ( 2nd |` ( B X. C ) ) o. h ) ` z ) |
43 |
40 42
|
eqtrdi |
|- ( G = ( Q o. h ) -> ( G ` z ) = ( ( ( 2nd |` ( B X. C ) ) o. h ) ` z ) ) |
44 |
43
|
3ad2ant3 |
|- ( ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) -> ( G ` z ) = ( ( ( 2nd |` ( B X. C ) ) o. h ) ` z ) ) |
45 |
44
|
ad2antlr |
|- ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( G ` z ) = ( ( ( 2nd |` ( B X. C ) ) o. h ) ` z ) ) |
46 |
|
fvco3 |
|- ( ( h : A --> ( B X. C ) /\ z e. A ) -> ( ( ( 2nd |` ( B X. C ) ) o. h ) ` z ) = ( ( 2nd |` ( B X. C ) ) ` ( h ` z ) ) ) |
47 |
33 46
|
sylan |
|- ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( ( ( 2nd |` ( B X. C ) ) o. h ) ` z ) = ( ( 2nd |` ( B X. C ) ) ` ( h ` z ) ) ) |
48 |
37
|
fvresd |
|- ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( ( 2nd |` ( B X. C ) ) ` ( h ` z ) ) = ( 2nd ` ( h ` z ) ) ) |
49 |
45 47 48
|
3eqtrrd |
|- ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( 2nd ` ( h ` z ) ) = ( G ` z ) ) |
50 |
|
eqopi |
|- ( ( ( h ` z ) e. ( _V X. _V ) /\ ( ( 1st ` ( h ` z ) ) = ( F ` z ) /\ ( 2nd ` ( h ` z ) ) = ( G ` z ) ) ) -> ( h ` z ) = <. ( F ` z ) , ( G ` z ) >. ) |
51 |
26 39 49 50
|
syl12anc |
|- ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( h ` z ) = <. ( F ` z ) , ( G ` z ) >. ) |
52 |
|
fveq2 |
|- ( x = z -> ( F ` x ) = ( F ` z ) ) |
53 |
|
fveq2 |
|- ( x = z -> ( G ` x ) = ( G ` z ) ) |
54 |
52 53
|
opeq12d |
|- ( x = z -> <. ( F ` x ) , ( G ` x ) >. = <. ( F ` z ) , ( G ` z ) >. ) |
55 |
|
opex |
|- <. ( F ` z ) , ( G ` z ) >. e. _V |
56 |
54 17 55
|
fvmpt |
|- ( z e. A -> ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` z ) = <. ( F ` z ) , ( G ` z ) >. ) |
57 |
56
|
adantl |
|- ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` z ) = <. ( F ` z ) , ( G ` z ) >. ) |
58 |
51 57
|
eqtr4d |
|- ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( h ` z ) = ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` z ) ) |
59 |
9 21 58
|
eqfnfvd |
|- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) -> h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) |
60 |
59
|
ex |
|- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> ( ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) -> h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) |
61 |
|
ffn |
|- ( F : A --> B -> F Fn A ) |
62 |
61
|
3ad2ant2 |
|- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> F Fn A ) |
63 |
|
fo1st |
|- 1st : _V -onto-> _V |
64 |
|
fofn |
|- ( 1st : _V -onto-> _V -> 1st Fn _V ) |
65 |
63 64
|
ax-mp |
|- 1st Fn _V |
66 |
|
ssv |
|- ( B X. C ) C_ _V |
67 |
|
fnssres |
|- ( ( 1st Fn _V /\ ( B X. C ) C_ _V ) -> ( 1st |` ( B X. C ) ) Fn ( B X. C ) ) |
68 |
65 66 67
|
mp2an |
|- ( 1st |` ( B X. C ) ) Fn ( B X. C ) |
69 |
19
|
frnd |
|- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> ran ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) C_ ( B X. C ) ) |
70 |
|
fnco |
|- ( ( ( 1st |` ( B X. C ) ) Fn ( B X. C ) /\ ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) Fn A /\ ran ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) C_ ( B X. C ) ) -> ( ( 1st |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) Fn A ) |
71 |
68 20 69 70
|
mp3an2i |
|- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> ( ( 1st |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) Fn A ) |
72 |
|
fvco3 |
|- ( ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) : A --> ( B X. C ) /\ z e. A ) -> ( ( ( 1st |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ` z ) = ( ( 1st |` ( B X. C ) ) ` ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` z ) ) ) |
73 |
19 72
|
sylan |
|- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( ( ( 1st |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ` z ) = ( ( 1st |` ( B X. C ) ) ` ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` z ) ) ) |
74 |
56
|
adantl |
|- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` z ) = <. ( F ` z ) , ( G ` z ) >. ) |
75 |
74
|
fveq2d |
|- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( ( 1st |` ( B X. C ) ) ` ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` z ) ) = ( ( 1st |` ( B X. C ) ) ` <. ( F ` z ) , ( G ` z ) >. ) ) |
76 |
|
ffvelrn |
|- ( ( F : A --> B /\ z e. A ) -> ( F ` z ) e. B ) |
77 |
|
ffvelrn |
|- ( ( G : A --> C /\ z e. A ) -> ( G ` z ) e. C ) |
78 |
|
opelxpi |
|- ( ( ( F ` z ) e. B /\ ( G ` z ) e. C ) -> <. ( F ` z ) , ( G ` z ) >. e. ( B X. C ) ) |
79 |
76 77 78
|
syl2an |
|- ( ( ( F : A --> B /\ z e. A ) /\ ( G : A --> C /\ z e. A ) ) -> <. ( F ` z ) , ( G ` z ) >. e. ( B X. C ) ) |
80 |
79
|
anandirs |
|- ( ( ( F : A --> B /\ G : A --> C ) /\ z e. A ) -> <. ( F ` z ) , ( G ` z ) >. e. ( B X. C ) ) |
81 |
80
|
3adantl1 |
|- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> <. ( F ` z ) , ( G ` z ) >. e. ( B X. C ) ) |
82 |
81
|
fvresd |
|- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( ( 1st |` ( B X. C ) ) ` <. ( F ` z ) , ( G ` z ) >. ) = ( 1st ` <. ( F ` z ) , ( G ` z ) >. ) ) |
83 |
|
fvex |
|- ( F ` z ) e. _V |
84 |
|
fvex |
|- ( G ` z ) e. _V |
85 |
83 84
|
op1st |
|- ( 1st ` <. ( F ` z ) , ( G ` z ) >. ) = ( F ` z ) |
86 |
82 85
|
eqtrdi |
|- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( ( 1st |` ( B X. C ) ) ` <. ( F ` z ) , ( G ` z ) >. ) = ( F ` z ) ) |
87 |
73 75 86
|
3eqtrrd |
|- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( F ` z ) = ( ( ( 1st |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ` z ) ) |
88 |
62 71 87
|
eqfnfvd |
|- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> F = ( ( 1st |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) |
89 |
1
|
coeq1i |
|- ( P o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) = ( ( 1st |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) |
90 |
88 89
|
eqtr4di |
|- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> F = ( P o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) |
91 |
|
ffn |
|- ( G : A --> C -> G Fn A ) |
92 |
91
|
3ad2ant3 |
|- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> G Fn A ) |
93 |
|
fo2nd |
|- 2nd : _V -onto-> _V |
94 |
|
fofn |
|- ( 2nd : _V -onto-> _V -> 2nd Fn _V ) |
95 |
93 94
|
ax-mp |
|- 2nd Fn _V |
96 |
|
fnssres |
|- ( ( 2nd Fn _V /\ ( B X. C ) C_ _V ) -> ( 2nd |` ( B X. C ) ) Fn ( B X. C ) ) |
97 |
95 66 96
|
mp2an |
|- ( 2nd |` ( B X. C ) ) Fn ( B X. C ) |
98 |
|
fnco |
|- ( ( ( 2nd |` ( B X. C ) ) Fn ( B X. C ) /\ ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) Fn A /\ ran ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) C_ ( B X. C ) ) -> ( ( 2nd |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) Fn A ) |
99 |
97 20 69 98
|
mp3an2i |
|- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> ( ( 2nd |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) Fn A ) |
100 |
|
fvco3 |
|- ( ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) : A --> ( B X. C ) /\ z e. A ) -> ( ( ( 2nd |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ` z ) = ( ( 2nd |` ( B X. C ) ) ` ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` z ) ) ) |
101 |
19 100
|
sylan |
|- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( ( ( 2nd |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ` z ) = ( ( 2nd |` ( B X. C ) ) ` ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` z ) ) ) |
102 |
74
|
fveq2d |
|- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( ( 2nd |` ( B X. C ) ) ` ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` z ) ) = ( ( 2nd |` ( B X. C ) ) ` <. ( F ` z ) , ( G ` z ) >. ) ) |
103 |
81
|
fvresd |
|- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( ( 2nd |` ( B X. C ) ) ` <. ( F ` z ) , ( G ` z ) >. ) = ( 2nd ` <. ( F ` z ) , ( G ` z ) >. ) ) |
104 |
83 84
|
op2nd |
|- ( 2nd ` <. ( F ` z ) , ( G ` z ) >. ) = ( G ` z ) |
105 |
103 104
|
eqtrdi |
|- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( ( 2nd |` ( B X. C ) ) ` <. ( F ` z ) , ( G ` z ) >. ) = ( G ` z ) ) |
106 |
101 102 105
|
3eqtrrd |
|- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( G ` z ) = ( ( ( 2nd |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ` z ) ) |
107 |
92 99 106
|
eqfnfvd |
|- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> G = ( ( 2nd |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) |
108 |
2
|
coeq1i |
|- ( Q o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) = ( ( 2nd |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) |
109 |
107 108
|
eqtr4di |
|- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> G = ( Q o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) |
110 |
19 90 109
|
3jca |
|- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) : A --> ( B X. C ) /\ F = ( P o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) /\ G = ( Q o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) ) |
111 |
|
feq1 |
|- ( h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) -> ( h : A --> ( B X. C ) <-> ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) : A --> ( B X. C ) ) ) |
112 |
|
coeq2 |
|- ( h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) -> ( P o. h ) = ( P o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) |
113 |
112
|
eqeq2d |
|- ( h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) -> ( F = ( P o. h ) <-> F = ( P o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) ) |
114 |
|
coeq2 |
|- ( h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) -> ( Q o. h ) = ( Q o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) |
115 |
114
|
eqeq2d |
|- ( h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) -> ( G = ( Q o. h ) <-> G = ( Q o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) ) |
116 |
111 113 115
|
3anbi123d |
|- ( h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) -> ( ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) <-> ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) : A --> ( B X. C ) /\ F = ( P o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) /\ G = ( Q o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) ) ) |
117 |
110 116
|
syl5ibrcom |
|- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> ( h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) -> ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) ) |
118 |
60 117
|
impbid |
|- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> ( ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) <-> h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) |
119 |
118
|
eubidv |
|- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> ( E! h ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) <-> E! h h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) |
120 |
6 119
|
mpbird |
|- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> E! h ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) |